Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Cell Rep ; 43(3): 113856, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38416641

ABSTRACT

Polycomb repressive complex 2 (PRC2) modifies chromatin to maintain repression of genes specific for other cell lineages. In vitro, RNA inhibits PRC2 activity, but the effect of RNA on PRC2 in cells is less clear, with studies concluding that RNA either antagonizes or promotes PRC2 chromatin association. The addition of RNase A to chromatin immunoprecipitation reactions has been reported to reduce detection of PRC2 target sites, suggesting the existence of RNA bridges connecting PRC2 to chromatin. Here, we show that the apparent loss of PRC2 chromatin association after RNase A treatment is due to non-specific chromatin precipitation. RNA degradation precipitates chromatin out of solution, thereby masking enrichment of specific DNA sequences in chromatin immunoprecipitation reactions. Maintaining chromatin solubility by the addition of poly-L-glutamic acid rescues detection of PRC2 chromatin occupancy upon RNA degradation. These findings undermine support for the model that RNA bridges PRC2 and chromatin in cells.


Subject(s)
Chromatin , Polycomb Repressive Complex 2 , Polycomb Repressive Complex 2/metabolism , RNA/metabolism , Artifacts , Ribonuclease, Pancreatic/metabolism , RNA Stability
2.
Front Immunol ; 14: 1113735, 2023.
Article in English | MEDLINE | ID: mdl-37114052

ABSTRACT

Huge progress has been made in understanding the biology of innate lymphoid cells (ILC) by adopting several well-known concepts in T cell biology. As such, flow cytometry gating strategies and markers, such as CD90, have been applied to indentify ILC. Here, we report that most non-NK intestinal ILC have a high expression of CD90 as expected, but surprisingly a sub-population of cells exhibit low or even no expression of this marker. CD90-negative and CD90-low CD127+ ILC were present amongst all ILC subsets in the gut. The frequency of CD90-negative and CD90-low CD127+ ILC was dependent on stimulatory cues in vitro and enhanced by dysbiosis in vivo. CD90-negative and CD90-low CD127+ ILC were a potential source of IL-13, IFNγ and IL-17A at steady state and upon dysbiosis- and dextran sulphate sodium-elicited colitis. Hence, this study reveals that, contrary to expectations, CD90 is not constitutively expressed by functional ILC in the gut.


Subject(s)
Colitis , Immunity, Innate , Humans , Colitis/metabolism , Cytokines/metabolism , Dysbiosis/metabolism , Lymphocytes/metabolism , Thy-1 Antigens/immunology
3.
Elife ; 122023 04 03.
Article in English | MEDLINE | ID: mdl-37010886

ABSTRACT

Most studies of cohesin function consider the Stromalin Antigen (STAG/SA) proteins as core complex members given their ubiquitous interaction with the cohesin ring. Here, we provide functional data to support the notion that the SA subunit is not a mere passenger in this structure, but instead plays a key role in the localization of cohesin to diverse biological processes and promotes loading of the complex at these sites. We show that in cells acutely depleted for RAD21, SA proteins remain bound to chromatin, cluster in 3D and interact with CTCF, as well as with a wide range of RNA binding proteins involved in multiple RNA processing mechanisms. Accordingly, SA proteins interact with RNA, and R-loops, even in the absence of cohesin. Our results place SA1 on chromatin upstream of the cohesin ring and reveal a role for SA1 in cohesin loading which is independent of NIPBL, the canonical cohesin loader. We propose that SA1 takes advantage of structural R-loop platforms to link cohesin loading and chromatin structure with diverse functions. Since SA proteins are pan-cancer targets, and R-loops play an increasingly prevalent role in cancer biology, our results have important implications for the mechanistic understanding of SA proteins in cancer and disease.


Subject(s)
R-Loop Structures , RNA , RNA/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Cell Cycle Proteins/metabolism , Chromatin , CCCTC-Binding Factor/metabolism , Cohesins
4.
Lancet Haematol ; 10(2): e93-e106, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36529145

ABSTRACT

BACKGROUND: Standard-of-care treatment for patients with newly diagnosed multiple myeloma is bortezomib-based induction followed by high-dose melphalan and autologous haematopoietic stem-cell transplantation (HSCT) and lenalidomide maintenance. We aimed to evaluate whether an immunomodulatory-free carfilzomib-based induction, consolidation, and maintenance protocol without autologous HSCT was non-inferior to the same induction regimen followed by autologous HSCT and maintenance. METHODS: CARDAMON is a randomised, open-label, phase 2 trial in 19 hospitals in England and Wales, UK. Newly diagnosed, transplantation-eligible patients with multiple myeloma aged 18 years or older with an Eastern Cooperative Oncology Group (ECOG) performance status of 0-2 received four 28-day cycles of carfilzomib (56 mg/m2 intravenously on days 1, 2, 8, 9, 15, and 16), cyclophosphamide (500 mg orally on days 1, 8, and 15), and dexamethasone (40 mg orally on days 1, 8, 15, and 22; KCd), followed by peripheral blood stem cell mobilisation. Patients with at least a partial response were randomly assigned (1:1) to either high-dose melphalan and autologous HSCT or four cycles of KCd. All randomised patients received 18 cycles of carfilzomib maintenance (56 mg/m2 intravenously on days 1, 8, and 15). The primary outcomes were the proportion of patients with at least a very good partial response after induction and difference in progression-free survival rate at 2 years from randomisation (non-inferiority margin 10%), both assessed by intention to treat. Safety was assessed in all patients who started treatment. The trial is registered with ClinicalTrials.gov (NCT02315716); recruitment is complete and all patients are in follow-up. FINDINGS: Between June 16, 2015, and July 8, 2019, 281 patients were enrolled, with 218 proceeding to randomisation (109 assigned to the KCd consolidation group [99 of whom completed consolidation] and 109 to the HSCT group [104 of whom underwent transplantation]). A further seven patients withdrew before initiation of carfilzomib maintenance (two in the KCd consolidation group vs five in the HSCT group). Median age was 59 years (IQR 52 to 64); 166 (59%) of 281 patients were male and 115 (41%) were female. 152 (71%) of 214 patients with known ethnicity were White, 37 (17%) were Black, 18 (8%) were Asian, 5 (2%) identified as Mixed, and 2 (1%) identified as other. Median follow-up from randomisation was 40·2 months (IQR 32·7 to 51·8). After induction, 162 (57·7%; 95% CI 51·6 to 63·5) of 281 patients had at least a very good partial response. The 2-year progression-free survival was 75% (95% CI 65 to 82) in the HSCT group versus 68% (95% CI 58 to 76) in the KCd group (difference -7·2%, 70% CI -11·1 to -2·8), exceeding the non-inferiority margin. The most common grade 3-4 events during KCd induction and consolidation were lymphocytopenia (72 [26%] of 278 patients who started induction; 15 [14%] of 109 patients who started consolidation) and infection (50 [18%] of 278 for induction; 15 [14%] of 109 for consolidation), and during carfilzomib maintenance were hypertension (20 [21%] of 97 patients in the KCd consolidation group vs 23 [23%] of 99 patients in the HSCT group) and infection (16 [16%] of 97 patients vs 25 [25%] of 99). Treatment-related serious adverse events at any point during the trial were reported in 109 (39%) of 278 patients who started induction, with infections (80 [29%]) being the most common. Treatment-emergent deaths were reported in five (2%) of 278 patients during induction (three from infection, one from cardiac event, and one from renal failure) and one of 99 patients during maintenance after autologous HSCT (oesophageal carcinoma). INTERPRETATION: KCd did not meet the criteria for non-inferiority compared with autologous HSCT, but the marginal difference in progression-free survival suggests that further studies are warranted to explore deferred autologous HSCT in some subgroups, such as individuals who are MRD negative after induction. FUNDING: Cancer Research UK and Amgen.


Subject(s)
Elettaria , Hematopoietic Stem Cell Transplantation , Multiple Myeloma , Female , Humans , Male , Middle Aged , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cyclophosphamide , Dexamethasone , Hematopoietic Stem Cell Transplantation/adverse effects , Melphalan/therapeutic use , Multiple Myeloma/drug therapy , Multiple Myeloma/pathology , Transplantation, Autologous/methods , Wales
5.
Cell Rep ; 39(9): 110889, 2022 05 31.
Article in English | MEDLINE | ID: mdl-35649353

ABSTRACT

Polycomb repressive complex 2 (PRC2) methylates histone H3 lysine 27 (H3K27me3) to maintain gene repression and is essential for cell differentiation. In low-grade endometrial stromal sarcoma (LG-ESS), the PRC2 subunit SUZ12 is often fused with the NuA4/TIP60 subunit JAZF1. We show that JAZF1-SUZ12 dysregulates PRC2 composition, genome occupancy, histone modification, gene expression, and cell differentiation. Loss of the SUZ12 N terminus in the fusion protein abrogates interaction with specific PRC2 accessory factors, reduces occupancy at PRC2 target genes, and diminishes H3K27me3. Fusion to JAZF1 increases H4Kac at PRC2 target genes and triggers recruitment to JAZF1 binding sites during cell differentiation. In human endometrial stromal cells, JAZF1-SUZ12 upregulated PRC2 target genes normally activated during decidualization while repressing genes associated with immune clearance, and JAZF1-SUZ12-induced genes were also overexpressed in LG-ESS. These results reveal defects in chromatin regulation, gene expression, and cell differentiation caused by JAZF1-SUZ12 that may underlie its role in oncogenesis.


Subject(s)
Co-Repressor Proteins , DNA-Binding Proteins , Histones , Neoplasm Proteins , Polycomb Repressive Complex 2 , Transcription Factors , Cell Differentiation/genetics , Co-Repressor Proteins/metabolism , DNA-Binding Proteins/metabolism , Gene Expression , Histones/metabolism , Humans , Neoplasm Proteins/metabolism , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Transcription Factors/metabolism
6.
Cell Mol Gastroenterol Hepatol ; 14(3): 625-641, 2022.
Article in English | MEDLINE | ID: mdl-35660024

ABSTRACT

BACKGROUND & AIMS: Resistance to single cytokine blockade, namely anti-tumor necrosis factor (TNF) therapy, is a growing concern for patients with inflammatory bowel disease (IBD). The transcription factor T-bet is a critical regulator of intestinal homeostasis, is genetically linked to mucosal inflammation and controls the expression of multiples genes such as the pro-inflammatory cytokines interferon (IFN)-γ and TNF. Inhibiting T-bet may therefore offer a more attractive prospect for treating IBD but remains challenging to target therapeutically. In this study, we evaluate the effect of targeting the transactivation function of T-bet using inhibitors of P-TEFb (CDK9-cyclin T), a transcriptional elongation factor downstream of T-bet. METHODS: Using an adaptive immune-mediated colitis model, human colonic lymphocytes from patients with IBD and multiple large clinical datasets, we investigate the effect of cyclin-dependent kinase 9 (CDK9) inhibitors on cytokine production and gene expression in colonic CD4+ T cells and link these genetic modules to clinical response in patients with IBD. RESULTS: Systemic CDK9 inhibition led to histological improvement of immune-mediated colitis and was associated with targeted suppression of colonic CD4+ T cell-derived IFN-γ and IL-17A. In colonic lymphocytes from patients with IBD, CDK9 inhibition potently repressed genes responsible for pro-inflammatory signalling, and in particular genes regulated by T-bet. Remarkably, CDK9 inhibition targeted genes that were highly expressed in anti-TNF resistant IBD and that predicted non-response to anti-TNF therapy. CONCLUSION: Collectively, our findings reveal CDK9 as a potential target for anti-TNF-resistant IBD, which has the potential for rapid translation to the clinic.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Colitis/drug therapy , Cyclin-Dependent Kinase 9 , Cytokines/metabolism , Humans , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/pathology , Tumor Necrosis Factor Inhibitors
7.
Nucleic Acids Res ; 50(8): 4557-4573, 2022 05 06.
Article in English | MEDLINE | ID: mdl-35438764

ABSTRACT

Lineage-determining transcription factors (LD-TFs) drive the differentiation of progenitor cells into a specific lineage. In CD4+ T cells, T-bet dictates differentiation of the TH1 lineage, whereas GATA3 drives differentiation of the alternative TH2 lineage. However, LD-TFs, including T-bet and GATA3, are frequently co-expressed but how this affects LD-TF function is not known. By expressing T-bet and GATA3 separately or together in mouse T cells, we show that T-bet sequesters GATA3 at its target sites, thereby removing GATA3 from TH2 genes. This redistribution of GATA3 is independent of GATA3 DNA binding activity and is instead mediated by the T-bet DNA binding domain, which interacts with the GATA3 DNA binding domain and changes GATA3's sequence binding preference. This mechanism allows T-bet to drive the TH1 gene expression program in the presence of GATA3. We propose that redistribution of one LD-TF by another may be a common mechanism that could explain how specific cell fate choices can be made even in the presence of other transcription factors driving alternative differentiation pathways.


Subject(s)
GATA3 Transcription Factor , T-Box Domain Proteins/metabolism , Th2 Cells , Animals , Cell Lineage , DNA/metabolism , GATA3 Transcription Factor/genetics , GATA3 Transcription Factor/metabolism , Gene Expression , Mice , T-Box Domain Proteins/genetics , Th2 Cells/cytology , Th2 Cells/metabolism
8.
Eur J Immunol ; 52(4): 566-581, 2022 04.
Article in English | MEDLINE | ID: mdl-35092032

ABSTRACT

T-bet is the lineage-specifying transcription factor for CD4+ TH 1 cells. T-bet has also been found in other CD4+ T cell subsets, including TH 17 cells and Treg, where it modulates their functional characteristics. However, we lack information on when and where T-bet is expressed during T cell differentiation and how this impacts T cell differentiation and function. To address this, we traced the ontogeny of T-bet-expressing cells using a fluorescent fate-mapping mouse line. We demonstrate that T-bet is expressed in a subset of CD4+ T cells that have naïve cell surface markers and transcriptional profile and that this novel cell population is phenotypically and functionally distinct from previously described populations of naïve and memory CD4+ T cells. Naïve-like T-bet-experienced cells are polarized to the TH 1 lineage, predisposed to produce IFN-γ upon cell activation, and resist repolarization to other lineages in vitro and in vivo. These results demonstrate that lineage-specifying factors can polarize T cells in the absence of canonical markers of T cell activation and that this has an impact on the subsequent T-helper response.


Subject(s)
T-Box Domain Proteins , Th1 Cells , Animals , Cell Differentiation , Gene Expression Regulation , Lymphocyte Activation , Mice , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , T-Lymphocytes, Regulatory/metabolism , Th17 Cells/metabolism , Th2 Cells
9.
Life Sci Alliance ; 4(11)2021 11.
Article in English | MEDLINE | ID: mdl-34531288

ABSTRACT

Gene expression programs controlled by lineage-determining transcription factors are often conserved between species. However, infectious diseases have exerted profound evolutionary pressure, and therefore the genes regulated by immune-specific transcription factors might be expected to exhibit greater divergence. T-bet (Tbx21) is the immune-specific, lineage-specifying transcription factor for T helper type I (Th1) immunity, which is fundamental for the immune response to intracellular pathogens but also underlies inflammatory diseases. We compared T-bet genomic targets between mouse and human CD4+ T cells and correlated T-bet binding patterns with species-specific gene expression. Remarkably, we found that the majority of T-bet target genes are conserved between mouse and human, either via preservation of binding sites or via alternative binding sites associated with transposon-linked insertion. Species-specific T-bet binding was associated with differences in transcription factor-binding motifs and species-specific expression of associated genes. These results provide a genome-wide cross-species comparison of Th1 gene regulation that will enable more accurate translation of genetic targets and therapeutics from pre-clinical models of inflammatory and infectious diseases and cancer into human clinical trials.


Subject(s)
Gene Expression Regulation/genetics , T-Box Domain Proteins/genetics , Th1 Cells/physiology , Animals , Binding Sites/genetics , Databases, Genetic , Gene Expression/genetics , Genome/genetics , Humans , Mice , Protein Binding/genetics , T-Box Domain Proteins/metabolism , Th1 Cells/immunology , Transcription Factors/genetics , Transcription Factors/physiology , Transcriptome/genetics
10.
Mol Cell ; 81(14): 2944-2959.e10, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34166609

ABSTRACT

A number of regulatory factors are recruited to chromatin by specialized RNAs. Whether RNA has a more general role in regulating the interaction of proteins with chromatin has not been determined. We used proteomics methods to measure the global impact of nascent RNA on chromatin in embryonic stem cells. Surprisingly, we found that nascent RNA primarily antagonized the interaction of chromatin modifiers and transcriptional regulators with chromatin. Transcriptional inhibition and RNA degradation induced recruitment of a set of transcriptional regulators, chromatin modifiers, nucleosome remodelers, and regulators of higher-order structure. RNA directly bound to factors, including BAF, NuRD, EHMT1, and INO80 and inhibited their interaction with nucleosomes. The transcriptional elongation factor P-TEFb directly bound pre-mRNA, and its recruitment to chromatin upon Pol II inhibition was regulated by the 7SK ribonucleoprotein complex. We postulate that by antagonizing the interaction of regulatory proteins with chromatin, nascent RNA links transcriptional output with chromatin composition.


Subject(s)
Chromatin/metabolism , RNA/metabolism , Transcription Factors/metabolism , Animals , DNA-Binding Proteins/metabolism , Embryonic Stem Cells/metabolism , Gene Expression Regulation/physiology , HEK293 Cells , Humans , Male , Mice , Nucleosomes/metabolism , Positive Transcriptional Elongation Factor B/metabolism , Protein Binding/physiology , Proteomics/methods , RNA Polymerase II/metabolism , Transcription, Genetic/physiology , Transcriptional Elongation Factors/metabolism
11.
J Crohns Colitis ; 15(12): 2054-2065, 2021 Dec 18.
Article in English | MEDLINE | ID: mdl-34120187

ABSTRACT

BACKGROUND AND AIMS: Differential responsiveness to interleukin [IL]-2 between effector CD4+ T cells [Teff] and regulatory T cells [Treg] is a fundamental mechanism of immunoregulation. The single nucleotide polymorphism [SNP] rs61839660, located within IL2RA [CD25], has been associated with the development of Crohn's disease [CD]. We sought to identify the T cell immune phenotype of IBD patients who carry this SNP. METHODS: Teff and Treg were isolated from individuals homozygous [TT], heterozygous [CT], or wild-type [CC] for the minor allele at rs61839660, and used for phenotyping [flow cytometry, Cytometry Time Of Flight] functional assays or T cell receptor [TCR] sequencing. Phosphorylation of signal transducer and activator of transcription 5 [STAT5] was assessed in response to IL-2, IL-7, and in the presence of basiliximab, a monoclonal antibody directed against CD25. Teff pro-inflammatory cytokine expression levels were assessed by reverse transcription quantitative polymerase chain reaction after IL-2 and/or TCR stimulation. RESULTS: Presence of the minor T allele enhances CD25 expression, leading to increased STAT5 phosphorylation and pro-inflammatory cytokine transcript expression by Teff in response to IL-2 stimulation in vitro. Teff from TT individuals demonstrate a more activated gut homing phenotype. TCR sequencing analysis suggests that TT patients may have a reduced clonal capacity to mount an optimal regulatory T cell response. CONCLUSIONS: rs61839660 regulates the responsiveness of T cells to IL-2 signalling by modulating CD25 expression. As low-dose IL-2 is being trialled as a selective Treg modulator in CD, these findings highlight the potential for adverse effects in patients with this genotype.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Crohn Disease/genetics , Interleukin-2 Receptor alpha Subunit/immunology , Interleukin-2/immunology , T-Lymphocytes, Regulatory/immunology , Case-Control Studies , Crohn Disease/immunology , Databases, Factual , Female , Humans , Immunophenotyping , Male , Middle Aged , Polymorphism, Single Nucleotide , Signal Transduction , State Medicine , United Kingdom
12.
Methods Mol Biol ; 2285: 201-216, 2021.
Article in English | MEDLINE | ID: mdl-33928555

ABSTRACT

Chromatin immunoprecipitation (ChIP) coupled with high-throughput sequencing (ChIP-seq) is an invaluable method to profile of enrichment of histone modifications and transcription factor binding sites across the genome. However, standard ChIP-seq protocols require large numbers of cells (>107) as starting material, which are often impossible to obtain for rare immune populations. Here we describe a streamlined ChIP protocol optimised for small cell numbers in conjunction with transposon-tagging mediated sequencing library preparation (ChIPmentation) which allows the analysis of samples of as low as 105 cells.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , Chromatin Immunoprecipitation , DNA/metabolism , Transcription Factors/metabolism , Animals , Binding Sites , CD4-Positive T-Lymphocytes/immunology , Cells, Cultured , High-Throughput Nucleotide Sequencing , Humans , Protein Binding , Research Design , Workflow
13.
Br J Haematol ; 193(4): 750-760, 2021 05.
Article in English | MEDLINE | ID: mdl-33650100

ABSTRACT

Proteasome inhibitors have been associated with thrombotic microangiopathy (TMA) - a group of disorders characterised by occlusive microvascular thrombosis causing microangiopathic haemolytic anaemia, thrombocytopenia and end-organ damage. To date, carfilzomib-associated TMA has predominantly been described in relapsed/refractory myeloma patients. We report eight patients with newly diagnosed myeloma who experienced TMA events while receiving carfilzomib on the phase II CARDAMON trial. The first three occurred during maintenance single-agent carfilzomib, two occurred at induction with carfilzomib given with cyclophosphamide and dexamethasone (KCd) and three occurred during KCd consolidation. At TMA presentation 6/8 were hypertensive; 7/8 had acute kidney injury and in three, renal impairment persisted after resolution of TMA in other respects. The mechanism of carfilzomib-associated TMA remains unclear, though patients with known hypertension seem particularly susceptible. Given the first three cases occurred during maintenance after a longer than five-week treatment break, a protocol amendment was instituted with: aggressive hypertension management, carfilzomib step-up dosing (20 mg/m2 on day 1) at start of maintenance before dose escalation to 56 mg/m2 maximum, and adding 10 mg dexamethasone as premedication to maintenance carfilzomib infusions. No further TMA events occurred during maintenance following this amendment and the TMA incidence reduced from 4·2 to 1·6 per 1 000 patient cycles.


Subject(s)
Acute Kidney Injury , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Multiple Myeloma , Thrombotic Microangiopathies , Acute Kidney Injury/drug therapy , Acute Kidney Injury/epidemiology , Aged , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Cyclophosphamide/administration & dosage , Cyclophosphamide/adverse effects , Dexamethasone/administration & dosage , Dexamethasone/adverse effects , Female , Humans , Male , Middle Aged , Multiple Myeloma/drug therapy , Multiple Myeloma/epidemiology , Oligopeptides/administration & dosage , Oligopeptides/adverse effects , Thrombotic Microangiopathies/chemically induced , Thrombotic Microangiopathies/epidemiology
15.
J Immunol ; 205(6): 1608-1619, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32817333

ABSTRACT

CD4+ T cell functional inhibition (exhaustion) is a hallmark of malaria and correlates with impaired parasite control and infection chronicity. However, the mechanisms of CD4+ T cell exhaustion are still poorly understood. In this study, we show that Ag-experienced (Ag-exp) CD4+ T cell exhaustion during Plasmodium yoelii nonlethal infection occurs alongside the reduction in mammalian target of rapamycin (mTOR) activity and restriction in CD4+ T cell glycolytic capacity. We demonstrate that the loss of glycolytic metabolism and mTOR activity within the exhausted Ag-expCD4+ T cell population during infection coincides with reduction in T-bet expression. T-bet was found to directly bind to and control the transcription of various mTOR and metabolism-related genes within effector CD4+ T cells. Consistent with this, Ag-expTh1 cells exhibited significantly higher and sustained mTOR activity than effector T-bet- (non-Th1) Ag-expT cells throughout the course of malaria. We identified mTOR to be redundant for sustaining T-bet expression in activated Th1 cells, whereas mTOR was necessary but not sufficient for maintaining IFN-γ production by Th1 cells. Immunotherapy targeting PD-1, CTLA-4, and IL-27 blocked CD4+ T cell exhaustion during malaria infection and was associated with elevated T-bet expression and a concomitant increased CD4+ T cell glycolytic metabolism. Collectively, our data suggest that mTOR activity is linked to T-bet in Ag-expCD4+ T cells but that reduction in mTOR activity may not directly underpin Ag-expTh1 cell loss and exhaustion during malaria infection. These data have implications for therapeutic reactivation of exhausted CD4+ T cells during malaria infection and other chronic conditions.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Immune Checkpoint Inhibitors/therapeutic use , Malaria/immunology , Mechanistic Target of Rapamycin Complex 1/metabolism , Plasmodium yoelii/physiology , T-Box Domain Proteins/metabolism , Th1 Cells/immunology , Animals , Cellular Senescence , Gene Expression Regulation , Glycolysis , Humans , Immune Tolerance , Immunologic Memory , Interferon-gamma/metabolism , Interleukin-27/metabolism , Lymphocyte Activation , Malaria/therapy , Mice , Mice, Inbred C57BL , Mice, Knockout , T-Box Domain Proteins/genetics
16.
Cancer Res ; 80(20): 4540-4551, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32855205

ABSTRACT

Expression of the transcription factor brachyury (TBXT) is normally restricted to the embryo, and its silencing is epigenetically regulated. TBXT promotes mesenchymal transition in a subset of common carcinomas, and in chordoma, a rare cancer showing notochordal differentiation, TBXT acts as a putative oncogene. We hypothesized that TBXT expression is controlled through epigenetic inhibition to promote chordoma cell death. Screening of five human chordoma cell lines revealed that pharmacologic inhibition of the histone 3 lysine 27 demethylases KDM6A (UTX) and KDM6B (JMJD3) leads to cell death. This effect was phenocopied by dual genetic inactivation of KDM6A/B using CRISPR/Cas9. Inhibition of KDM6A/B with a novel compound KDOBA67 led to a genome-wide increase in repressive H3K27me3 marks with concomitant reduction in active H3K27ac, H3K9ac, and H3K4me3 marks. TBXT was a KDM6A/B target gene, and chromatin changes at TBXT following KDOBA67 treatment were associated with a reduction in TBXT protein levels in all models tested, including primary patient-derived cultures. In all models tested, KDOBA67 treatment downregulated expression of a network of transcription factors critical for chordoma survival and upregulated pathways dominated by ATF4-driven stress and proapoptotic responses. Blocking the AFT4 stress response did not prevent suppression of TBXT and induction of cell death, but ectopic overexpression of TBXT increased viability, therefore implicating TBXT as a potential therapeutic target of H3K27 demethylase inhibitors in chordoma. Our work highlights how knowledge of normal processes in fetal development can provide insight into tumorigenesis and identify novel therapeutic approaches. SIGNIFICANCE: Pharmacologic inhibition of H3K27-demethylases in human chordoma cells promotes epigenetic silencing of oncogenic TBXT, alters gene networks critical to survival, and represents a potential novel therapy.


Subject(s)
Chordoma/drug therapy , Enzyme Inhibitors/pharmacology , Fetal Proteins/genetics , Histone Demethylases/antagonists & inhibitors , T-Box Domain Proteins/genetics , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism , Antineoplastic Agents/pharmacology , Cell Death/drug effects , Cell Line, Tumor , Chordoma/genetics , Chordoma/pathology , Chromatin/genetics , Chromatin/metabolism , Drug Screening Assays, Antitumor , Epigenesis, Genetic , Fetal Proteins/metabolism , Gene Expression Regulation, Neoplastic , Histone Demethylases/metabolism , Histones/metabolism , Humans , Lysine/metabolism , Molecular Targeted Therapy , Small Molecule Libraries/pharmacology , T-Box Domain Proteins/metabolism
17.
Am J Transplant ; 20(10): 2715-2727, 2020 10.
Article in English | MEDLINE | ID: mdl-32277570

ABSTRACT

Organ transplantation is often lifesaving, but the long-term deleterious effects of combinatorial immunosuppression regimens and allograft failure cause significant morbidity and mortality. Long-term graft survival in the absence of continuing immunosuppression, defined as operational tolerance, has never been described in the context of multiple major histocompatibility complex (MHC) mismatches. Here, we show that miR-142 deficiency leads to indefinite allograft survival in a fully MHC mismatched murine cardiac transplant model in the absence of exogenous immunosuppression. We demonstrate that the cause of indefinite allograft survival in the absence of miR-142 maps specifically to the T cell compartment. Of therapeutic relevance, temporal deletion of miR-142 in adult mice prior to transplantation of a fully MHC mismatched skin allograft resulted in prolonged allograft survival. Mechanistically, miR-142 directly targets Tgfbr1 for repression in regulatory T cells (TREG ). This leads to increased TREG sensitivity to transforming growth factor - beta and promotes transplant tolerance via an augmented peripheral TREG response in the absence of miR-142. These data identify manipulation of miR-142 as a promising approach for the induction of tolerance in human transplantation.


Subject(s)
Graft Rejection , MicroRNAs , Allografts , Animals , Graft Rejection/etiology , Graft Survival , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , MicroRNAs/genetics , T-Lymphocytes, Regulatory , Transplantation Tolerance , Transplantation, Homologous
18.
Immunity ; 52(1): 151-166.e6, 2020 01 14.
Article in English | MEDLINE | ID: mdl-31924474

ABSTRACT

In addition to helper and regulatory potential, CD4+ T cells also acquire cytotoxic activity marked by granzyme B (GzmB) expression and the ability to promote rejection of established tumors. Here, we examined the molecular and cellular mechanisms underpinning the differentiation of cytotoxic CD4+ T cells following immunotherapy. CD4+ transfer into lymphodepleted animals or regulatory T (Treg) cell depletion promoted GzmB expression by tumor-infiltrating CD4+, and this was prevented by interleukin-2 (IL-2) neutralization. Transcriptional analysis revealed a polyfunctional helper and cytotoxic phenotype characterized by the expression of the transcription factors T-bet and Blimp-1. While T-bet ablation restricted interferon-γ (IFN-γ) production, loss of Blimp-1 prevented GzmB expression in response to IL-2, suggesting two independent programs required for polyfunctionality of tumor-reactive CD4+ T cells. Our findings underscore the role of Treg cells, IL-2, and Blimp-1 in controlling the differentiation of cytotoxic CD4+ T cells and offer a pathway to enhancement of anti-tumor activity through their manipulation.


Subject(s)
Granzymes/immunology , Neoplasms/immunology , Positive Regulatory Domain I-Binding Factor 1/metabolism , T-Box Domain Proteins/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/transplantation , Adoptive Transfer , Animals , Cell Line, Tumor , Humans , Interferon-gamma/immunology , Interleukin-2/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , T-Lymphocytes, Regulatory/cytology , Tumor Microenvironment/immunology
19.
Nat Struct Mol Biol ; 26(12): 1184-1186, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31695189

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

20.
Nat Rev Mol Cell Biol ; 20(11): 715, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31506602

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

SELECTION OF CITATIONS
SEARCH DETAIL
...