Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 318: 115600, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35772271

ABSTRACT

Photocatalysis technology is observed to be an effective approach for its outstanding performance to eliminate wide range of organic pollutants including dyes in textile effluent. Despite growing number of studies, there is no scientometric perspective addressing the research topic "photocatalytic degradation of dye effluents". In this regard, a total of 954 documents were extracted from the Web of Science (WoS) database using keywords search to cover all the published documents during the period 1996-2020. Publications in this area started to increase exponentially from year 2007. The most dominant subject categories were Engineering, Chemistry and Environmental Science & Ecology. Applied Catalysis B-Environmental and Desalination & Water Treatment were identified as the most-impactful and productive journals respectively. Authors based in India accounted for 29.6% of total publications followed by China (14.2%); but in terms of citations Spain and Italy were more influential. Based on keyword analysis, azo dyes, TiO2, nanoparticles, adsorption, methylene blue, visible light, ZnO and kinetics are the most studied, and visible light mediated photocatalysis, hybrid treatment systems, nano based photocatalysis and more recently, metal based photocatalysis, have received most attention. Studies on cost and energy analysis, recovery of value-added products, development of more efficient photocatalytic materials and new photocatalyst regeneration approaches should be considered for future research. This study therefore, provides a comprehensive understanding about the trends and patterns of the specified research field worldwide.


Subject(s)
Water Pollutants, Chemical , Water Purification , Azo Compounds , Catalysis , Coloring Agents
SELECTION OF CITATIONS
SEARCH DETAIL
...