Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 52(45): 16974-16983, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37933188

ABSTRACT

New 1,2-azolylamidino complexes fac-[RuCl(DMSO)3(NHC(R)az*-κ2N,N)]OTf [R = Me (2), Ph (3); az* = pz (pyrazolyl, a), indz (indazolyl, b)] are synthesized via chloride abstraction from their corresponding precursors cis,fac-[RuCl2(DMSO)3(az*H)] (1) after subsequent base-catalyzed coupling of the appropriate nitrile with the 1,2-azole previously coordinated. All the compounds are characterized by 1H NMR, 13C NMR and IR spectroscopy. Those derived from MeCN are also characterized by X-ray diffraction. Electrochemical studies showed several reduction waves in the range of -1.5 to -3 V. The electrochemical behavior in CO2 media is consistent with CO2 electrocatalytic reduction. The catalytic activity expressed as [icat(CO2)/ip(Ar)] ranged from 1.7 to 3.7 for the 1,2-azolylamidino complexes at voltages of ca. -2.7 to -3 V vs. ferrocene/ferrocenium. Controlled potential electrolysis showed rapid decomposition of the Ru catalysts. Photocatalytic CO2 reduction experiments using compounds 1b, 2b and 3b carried out in a CO2-saturated MeCN/TEOA (4 : 1 v/v) solution containing a mixture of the catalyst and [Ru(bipy)3]2+ as the photosensitizer under continuous irradiation (light intensity of 150 mW cm-2 at 25 °C, λ > 300 nm) show that compounds 1b, 2b and 3b allowed CO2 reduction catalysis, producing CO and trace amounts of formate. The combined turnover number for the production of formate and CO is ca. 100 after 8 h and follows the order 1b < 2b ≈ 3b.

2.
Inorg Chem ; 59(20): 14866-14870, 2020 Oct 19.
Article in English | MEDLINE | ID: mdl-32993282

ABSTRACT

Antimicrobial photodynamic therapy (APDT) has gained increased attention because of its broad spectrum activity and lower likelihood to elicit bacterial resistance. Although many photosensitizers excel at eradicating Gram-positive bacterial infections, they are generally less potent when utilized against Gram-negative bacteria. We hypothesized that conjugating the DNA-targeting, antimicrobial peptide buforin II to a metal-based photosensitizer would result in a potent APDT agent. Herein, we present the synthesis and characterization of a buforin II-[Ru(bpy)3]2+ bioconjugate (1). The submicromolar activity of 1 against the multidrug-resistant strains Escherichia coli AR 0114 and Acinetobacter baumannii Naval-17 indicates strong synergy between the ruthenium complex and buforin II. Our mechanistic studies point to an increased rate of DNA damage by 1 compared to [Ru(bpy)3]2+. These results suggest that conjugating metal complexes to antimicrobial peptides can lead to potent antimicrobial agents.


Subject(s)
Anti-Bacterial Agents/pharmacology , Coordination Complexes/pharmacology , Drug Resistance, Bacterial/drug effects , Drug Resistance, Multiple/drug effects , Photosensitizing Agents/pharmacology , Proteins/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/radiation effects , Coordination Complexes/chemical synthesis , Coordination Complexes/radiation effects , DNA Damage/drug effects , DNA, Superhelical/drug effects , Gram-Negative Bacteria/drug effects , Microbial Sensitivity Tests , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/radiation effects , Proteins/chemical synthesis , Ruthenium/chemistry , Ruthenium/radiation effects , Singlet Oxygen/metabolism
3.
Psychopharmacology (Berl) ; 232(9): 1501-13, 2015 May.
Article in English | MEDLINE | ID: mdl-25366875

ABSTRACT

RATIONALE: Acute administration of the recreational drug of abuse 3,4-methylenedioxymethamphetamine (MDMA; Ecstasy) has previously been shown to increase cerebro-cortical perfusion as determined by bolus-tracking arterial spin labelling (btASL) MRI. OBJECTIVES: The purpose of the current study was to assess the mechanisms mediating these changes following systemic administration of MDMA to rats. METHODS: Pharmacological manipulation of serotonergic, dopaminergic and nitrergic transmission was carried out to determine the mechanism of action of MDMA-induced increases in cortical perfusion using btASL MRI. RESULTS: Fenfluramine (10 mg/kg), like MDMA (20 mg/kg), increased cortical perfusion. Increased cortical perfusion was not obtained with the 5-HT2 receptor agonist 2,5-dimethoxy-4-iodophenyl-aminopropane hydrochloride (DOI) (1 mg/kg). Depletion of central 5-HT following systemic administration of the tryptophan hydroxylase inhibitor para-chlorophenylalanine (pCPA) produced effects similar to those observed with MDMA. Pre-treatment with the 5-HT receptor antagonist metergoline (4 mg/kg) or with the 5-HT reuptake inhibitor citalopram (30 mg/kg), however, failed to produce any effect alone or influence the response to MDMA. Pre-treatment with the dopamine D1 receptor antagonist SCH 23390 (1 mg/kg) failed to influence the changes in cortical perfusion obtained with MDMA. Treatment with the neuronal nitric oxide (NO) synthase inhibitor 7-nitroindazole (7-NI) (25 mg/kg) provoked no change in cerebral perfusion alone yet attenuated the MDMA-related increase in cortical perfusion. CONCLUSIONS: Cortical 5-HT depletion is associated with increases in perfusion although this mechanism alone does not account for MDMA-related changes. A role for NO, a key regulator of cerebrovascular perfusion, is implicated in MDMA-induced increases in cortical perfusion.


Subject(s)
Brain/drug effects , Cerebrovascular Circulation/drug effects , N-Methyl-3,4-methylenedioxyamphetamine/pharmacology , Animals , Citalopram/pharmacology , Dopamine Antagonists/pharmacology , Fenclonine/pharmacology , Fenfluramine/pharmacology , Magnetic Resonance Imaging/methods , Male , Rats , Rats, Wistar , Serotonin Antagonists/pharmacology , Serotonin Receptor Agonists/pharmacology , Spin Labels
SELECTION OF CITATIONS
SEARCH DETAIL
...