Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomolecules ; 14(1)2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38254725

ABSTRACT

Recombinant human erythropoietin (EPO) is a biopharmaceutical frequently used in the treatment of anemia. It is a heavily glycosylated protein with a diverse and complex glycome. EPO N-glycosylation influences important pharmacological parameters, prominently serum half-life. Therefore, EPO N-glycosylation analysis is of the utmost importance in terms of controlling critical quality attributes. In this work, we performed an interlaboratory study of glycoanalytical techniques for profiling and in-depth characterization, namely (1) hydrophilic interaction liquid chromatography with fluorescence detection after 2-aminobenzamide labeling (HILIC-FLD(2AB)) and optional weak anion exchange chromatography (WAX) fractionation and exoglycosidase digestion, (2) HILIC-FLD after procainamide labeling (PROC) optionally coupled to electrospray ionization-MS and (3) matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-MS). All techniques showed good precision and were able to differentiate the unique N-glycosylation profiles of the various EPO preparations. HILIC-FLD showed higher precision, while MALDI-TOF-MS covered the most analytes. However, HILIC-FLD differentiated isomeric N-glycans, i.e., N-acetyllactosamine repeats and O-acetylation regioisomers. For routine profiling, HILIC-FLD methods are more accessible and cover isomerism in major structures, while MALDI-MS covers more minor analytes with an attractively high throughput. For in-depth characterization, MALDI-MS and HILIC-FLD(2AB)/WAX give a similar amount of orthogonal information. HILIC-FLD(PROC)-MS is attractive for covering isomerism of major structures with a significantly less extensive workflow compared to HILIC-FLD(2AB)/WAX.


Subject(s)
Erythropoietin , Humans , Glycosylation , Protein Processing, Post-Translational , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Acetylation
2.
J Proteome Res ; 17(3): 1269-1277, 2018 03 02.
Article in English | MEDLINE | ID: mdl-29441788

ABSTRACT

Afamin is an 87 kDa glycoprotein with five predicted N-glycosylation sites. Afamin's glycan abundance contributes to conformational and chemical inhomogeneity presenting great challenges for molecular structure determination. For the purpose of studying the structure of afamin, various forms of recombinantly expressed human afamin (rhAFM) with different glycosylation patterns were thus created. Wild-type rhAFM and various hypoglycosylated forms were expressed in CHO, CHO-Lec1, and HEK293T cells. Fully nonglycosylated rhAFM was obtained by transfection of point-mutated cDNA to delete all N-glycosylation sites of afamin. Wild-type and hypo/nonglycosylated rhAFM were purified from cell culture supernatants by immobilized metal ion affinity and size exclusion chromatography. Glycan analysis of purified proteins demonstrated differences in micro- and macro-heterogeneity of glycosylation enabling the comparison between hypoglycosylated, wild-type rhAFM, and native plasma afamin. Because antibody fragments can work as artificial chaperones by stabilizing the structure of proteins and consequently enhance the chance for successful crystallization, we incubated a Fab fragment of the monoclonal anti-afamin antibody N14 with human afamin and obtained a stoichiometric complex. Subsequent results showed sufficient expression of various partially or nonglycosylated forms of rhAFM in HEK293T and CHO cells and revealed that glycosylation is not necessary for expression and secretion.


Subject(s)
Antibodies, Monoclonal/chemistry , Antigen-Antibody Complex/chemistry , Carrier Proteins/chemistry , Glycoproteins/chemistry , Immunoglobulin Fab Fragments/chemistry , Protein Processing, Post-Translational , Serum Albumin, Human/chemistry , Amino Acid Sequence , Animals , Antibodies, Monoclonal/metabolism , Antigen-Antibody Complex/metabolism , CHO Cells , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cloning, Molecular , Cricetulus , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Glycoproteins/genetics , Glycoproteins/metabolism , Glycosylation , HEK293 Cells , Humans , Immunoglobulin Fab Fragments/metabolism , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/chemistry , Polysaccharides/chemistry , Polysaccharides/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Serum Albumin, Human/genetics , Serum Albumin, Human/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...