Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22271039

ABSTRACT

ImportanceGrowing evidence suggests that coronavirus disease 2019 (COVID-19) is associated with neurological sequelae. However, the underlying pathophysiological mechanisms resulting in central nervous system (CNS) derogation remain unclear. ObjectiveTo identify severity-dependent immune mechanisms in the cerebrospinal fluid (CSF) and plasma of COVID-19 patients and their association with brain imaging alterations. DesignProspective cross-sectional cohort study. SettingThis study was performed from August 2020 to April 2021. Participants were enrolled in the outpatient clinics, hospital wards and intensive care units (ICU) of two clinical sites in Basel and Zurich, Switzerland. ParticipantsAge >18 years and a positive SARS-CoV-2 test result were inclusion criteria. Potentially matching individuals were identified (n=310), of which 269 declined to participate and 1 did not match inclusion criteria. Paired CSF and plasma samples, as well as brain images, were acquired. The COVID-19 cohort (n=40; mean [SD] age, 54 [20] years; 17 women (42%)) was prospectively assorted by neurological symptom severity (classes I, II and III). Age/sex-matched inflammatory (n=25) and healthy (n=25) CSF and plasma control samples were obtained. For volumetric brain analysis, a healthy age/sex-matched control cohort (n=36) was established. ExposuresLumbar puncture, blood sampling and cranial MRI and/or CT. Main outcomes and measuresProteomics, standard parameters and antibody profiling of paired CSF and plasma samples in COVID-19 patients and controls. Brain imaging and gray matter volumetric analysis in association with biomarker profiles. Follow-up after 10-months. ResultsCOVID-19 patients displayed a plasma cytokine storm but a non-inflammatory CSF profile. Class III patients displayed signs of blood-brain barrier (BBB) impairment and a polyclonal B cell response targeting self- and non-self antigens. Decreased regional brain volumes were present in COVID-19 patients and associated with specific CSF and plasma parameters. Conclusion and relevanceNeuro-COVID class III patients had a strong, peripheral immune response resulting in (1) BBB impairment (2) ingress of (auto-)antibodies, (3) microglia activation and neuronal damage signatures. Our data point towards several potentially actionable targets that may be addressed to prevent COVID-19-related neurological sequelae. Trial registrationThe trial (NCT04472013) was registered on clinicaltrials.gov. Key pointsO_ST_ABSQuestionC_ST_ABSDoes a severity-dependent pattern of immune mechanisms exist in the cerebrospinal fluid (CSF) and plasma of COVID-19 patients and are these associated with clinical and brain imaging findings? FindingsNeuro-COVID patients display a robust class III-specific peripheral immune response resulting in (1) blood-brain barrier (BBB) impairment, (2) ingress of (auto-)antibodies, (3) microglia activation and neuronal damage signatures. Integration of MRIs, brain volumetry and proteomics identified biomarkers associated with regional brain volume loss in severe Neuro-COVID. MeaningWe provide a multidimensional framework of mechanisms associated with severe Neuro-COVID and present possible targets to prevent COVID-19-related neurological sequelae.

2.
Journal of Stroke ; : 369-376, 2020.
Article | WPRIM (Western Pacific) | ID: wpr-834677

ABSTRACT

Background@#and Purpose Serum neurofilament light (NfL)-chain is a circulating marker for neuroaxonal injury and is also associated with severity of cerebral small vessel disease (SVD) cross-sectionally. Here we explored the association of serum-NfL with imaging and cognitive measures in SVD longitudinally. @*Methods@#From 503 subjects with SVD, baseline and follow-up magnetic resonance imaging (MRI) was available for 264 participants (follow-up 8.7±0.2 years). Baseline serum-NfL was measured by an ultrasensitive single-molecule-assay. SVD-MRI-markers including white matter hyperintensity (WMH)-volume, mean diffusivity (MD), lacunes, and microbleeds were assessed at both timepoints. Cognitive testing was performed in 336 participants, including SVD-related domains as well as global cognition and memory. Associations with NfL were assessed using linear regression analyses and analysis of covariance (ANCOVA). @*Results@#Serum-NfL was associated with baseline WMH-volume, MD-values and presence of lacunes and microbleeds. SVD-related MRI- and cognitive measures showed progression during follow-up. NfL-levels were associated with future MRI-markers of SVD, including WMH, MD and lacunes. For the latter, this association was independent of baseline lacunes. Furthermore, NfL was associated with incident lacunes during follow-up (P=0.040). NfL-levels were associated with future SVD-related cognitive impairment (processing speed: β=–0.159; 95% confidence interval [CI], –0.242 to –0.068; P=0.001; executive function β=–0.095; 95% CI, –0.170 to –0.007; P=0.033), adjusted for age, sex, education, and depression. Dementia-risk increased with higher NfL-levels (hazard ratio, 5.0; 95% CI, 2.6 to 9.4; P<0.001), however not after adjusting for age. @*Conclusions@#Longitudinally, serum-NfL is associated with markers of SVD, especially with incident lacunes, and future cognitive impairment affecting various domains. NfL may potentially serve as an additional marker for disease monitoring and outcome in SVD, potentially capturing both vascular and neurodegenerative processes in the elderly.

3.
Journal of Stroke ; : 228-238, 2018.
Article in English | WPRIM (Western Pacific) | ID: wpr-714417

ABSTRACT

BACKGROUND AND PURPOSE: Neurofilament light chain (NfL) is a blood marker for neuroaxonal damage. We assessed the association between serum NfL and cerebral small vessel disease (SVD), which is highly prevalent in elderly individuals and a major cause of stroke and vascular cognitive impairment. METHODS: Using a cross-sectional design, we studied 53 and 439 patients with genetically defined SVD (Cerebral Autosomal-Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy [CADASIL]) and sporadic SVD, respectively, as well as 93 healthy controls. Serum NfL was measured by an ultrasensitive single-molecule array assay. We quantified magnetic resonance imaging (MRI) markers of SVD, i.e., white matter hyperintensity volume, lacune volume, brain volume, microbleed count, and mean diffusivity obtained from diffusion tensor imaging. Clinical characterization included neuropsychological testing in both SVD samples. CADASIL patients were further characterized for focal neurological deficits (National Institutes of Health stroke scale [NIHSS]) and disability (modified Rankin scale [mRS]). RESULTS: Serum NfL levels were elevated in both SVD samples (P < 1e-05 compared with controls) and associated with all SVD MRI markers. The strongest association was found for mean diffusivity (CADASIL, R2=0.52, P=1.2e-09; sporadic SVD, R2=0.21, P < 1e-15). Serum NfL levels were independently related to processing speed performance (CADASIL, R2=0.27, P=7.6e-05; sporadic SVD, R2=0.06, P=4.8e-08), focal neurological symptoms (CADASIL, NIHSS, P=4.2e-05) and disability (CADASIL, mRS, P=3.0e-06). CONCLUSIONS: We found serum NfL levels to be associated with both imaging and clinical features of SVD. Serum NfL might complement MRI markers in assessing SVD burden. Importantly, SVD needs to be considered when interpreting serum NfL levels in the context of other age-related diseases.


Subject(s)
Aged , Humans , Academies and Institutes , Biomarkers , Brain , CADASIL , Cerebral Small Vessel Diseases , Cognition Disorders , Complement System Proteins , Dementia, Vascular , Diffusion Tensor Imaging , Intermediate Filaments , Leukoencephalopathies , Magnetic Resonance Imaging , Neuropsychological Tests , Stroke , White Matter
SELECTION OF CITATIONS
SEARCH DETAIL
...