Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
mBio ; 14(2): e0007523, 2023 04 25.
Article in English | MEDLINE | ID: mdl-36975997

ABSTRACT

Bacterial AAA+ unfoldases are crucial for bacterial physiology by recognizing specific substrates and, typically, unfolding them for degradation by a proteolytic component. The caseinolytic protease (Clp) system is one example where a hexameric unfoldase (e.g., ClpC) interacts with the tetradecameric proteolytic core ClpP. Unfoldases can have both ClpP-dependent and ClpP-independent roles in protein homeostasis, development, virulence, and cell differentiation. ClpC is an unfoldase predominantly found in Gram-positive bacteria and mycobacteria. Intriguingly, the obligate intracellular Gram-negative pathogen Chlamydia, an organism with a highly reduced genome, also encodes a ClpC ortholog, implying an important function for ClpC in chlamydial physiology. Here, we used a combination of in vitro and cell culture approaches to gain insight into the function of chlamydial ClpC. ClpC exhibits intrinsic ATPase and chaperone activities, with a primary role for the Walker B motif in the first nucleotide binding domain (NBD1). Furthermore, ClpC binds ClpP1P2 complexes via ClpP2 to form the functional protease ClpCP2P1 in vitro, which degraded arginine-phosphorylated ß-casein. Cell culture experiments confirmed that higher order complexes of ClpC are present in chlamydial cells. Importantly, these data further revealed severe negative effects of both overexpression and depletion of ClpC in Chlamydia as revealed by a significant reduction in chlamydial growth. Here, again, NBD1 was critical for ClpC function. Hence, we provide the first mechanistic insight into the molecular and cellular function of chlamydial ClpC, which supports its essentiality in Chlamydia. ClpC is, therefore, a potential novel target for the development of antichlamydial agents. IMPORTANCE Chlamydia trachomatis is an obligate intracellular pathogen and the world's leading cause of preventable infectious blindness and bacterial sexually transmitted infections. Due to the high prevalence of chlamydial infections along with negative effects of current broad-spectrum treatment strategies, new antichlamydial agents with novel targets are desperately needed. In this context, bacterial Clp proteases have emerged as promising new antibiotic targets, since they often play central roles in bacterial physiology and, for some bacterial species, are even essential for survival. Here, we report on the chlamydial AAA+ unfoldase ClpC, its functional reconstitution and characterization, individually and as part of the ClpCP2P1 protease, and establish an essential role for ClpC in chlamydial growth and intracellular development, thereby identifying ClpC as a potential target for antichlamydial compounds.


Subject(s)
Chlamydia Infections , Chlamydia trachomatis , Humans , Chlamydia trachomatis/metabolism , ATPases Associated with Diverse Cellular Activities/metabolism , Proteolysis , Peptide Hydrolases/metabolism , Biology , Bacterial Proteins/metabolism
2.
ACS Med Chem Lett ; 13(5): 841-847, 2022 May 12.
Article in English | MEDLINE | ID: mdl-35586421

ABSTRACT

The present study describes our continued efforts in the discovery and characterization of a series of 2-sulfonamidebenzamides as allosteric modulators of MrgX1. MrgX1 has been shown to be an attractive target as a nonopioid receptor for the potential treatment of chronic pain. Working from our original compound, ML382, and utilizing iterative medicinal chemistry, we have identified key halogen substituents that improve MrgX1 potency by ∼8-fold. In addition, we have evaluated the compounds in Tier 1 drug metabolism and pharmacokinetics assays and have identified key compounds that impart improved potency and microsomal stability.

3.
Front Cell Neurosci ; 13: 426, 2019.
Article in English | MEDLINE | ID: mdl-31607867

ABSTRACT

Axonopathy is a hallmark of many neurodegenerative diseases including glaucoma, where elevated intraocular pressure (ocular hypertension, OHT) stresses retinal ganglion cell (RGC) axons as they exit the eye and form the optic nerve. OHT causes early changes in the optic nerve such as axon atrophy, transport inhibition, and gliosis. Importantly, many of these changes appear to occur prior to irreversible neuronal loss, making them promising points for early diagnosis of glaucoma. It is unknown whether OHT has similarly early effects on the function of RGC output to the brain. To test this possibility, we elevated eye pressure in mice by anterior chamber injection of polystyrene microbeads. Five weeks post-injection, bead-injected eyes showed a modest RGC loss in the peripheral retina, as evidenced by RBPMS antibody staining. Additionally, we observed reduced dendritic complexity and lower spontaneous spike rate of On-αRGCs, targeted for patch clamp recording and dye filling using a Opn4-Cre reporter mouse line. To determine the influence of OHT on retinal projections to the brain, we expressed Channelrhodopsin-2 (ChR2) in melanopsin-expressing RGCs by crossing the Opn4-Cre mouse line with a ChR2-reporter mouse line and recorded post-synaptic responses in thalamocortical relay neurons in the dorsal lateral geniculate nucleus (dLGN) of the thalamus evoked by stimulation with 460 nm light. The use of a Opn4-Cre reporter system allowed for expression of ChR2 in a narrow subset of RGCs responsible for image-forming vision in mice. Five weeks following OHT induction, paired pulse and high-frequency stimulus train experiments revealed that presynaptic vesicle release probability at retinogeniculate synapses was elevated. Additionally, miniature synaptic current frequency was slightly reduced in brain slices from OHT mice and proximal dendrites of post-synaptic dLGN relay neurons, assessed using a Sholl analysis, showed a reduced complexity. Strikingly, these changes occurred prior to major loss of RGCs labeled with the Opn4-Cre mouse, as indicated by immunofluorescence staining of ChR2-expressing retinal neurons. Thus, OHT leads to pre- and post-synaptic functional and structural changes at retinogeniculate synapses. Along with RGC dendritic remodeling and optic nerve transport changes, these retinogeniculate synaptic changes are among the earliest signs of glaucoma.

SELECTION OF CITATIONS
SEARCH DETAIL
...