Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Biol ; 32(3): 701-707.e5, 2022 02 07.
Article in English | MEDLINE | ID: mdl-34995490

ABSTRACT

Biodiversity monitoring at the community scale is a critical element of assessing and studying species distributions, ecology, diversity, and movements, and it is key to understanding and tracking environmental and anthropogenic effects on natural ecosystems.1-4 Vertebrates in terrestrial ecosystems are experiencing extinctions and declines in both population numbers and sizes due to increasing threats from human activities and environmental change.5-8 Terrestrial vertebrate monitoring using existing methods is generally costly and laborious, and although environmental DNA (eDNA) is becoming the tool of choice to assess biodiversity, few sample types effectively capture terrestrial vertebrate diversity. We hypothesized that eDNA captured from air could allow straightforward collection and characterization of terrestrial vertebrate communities. We filtered air at three localities in the Copenhagen Zoo: a stable, outside between the outdoor enclosures, and in the Rainforest House. Through metabarcoding of airborne eDNA, we detected 49 vertebrate species spanning 26 orders and 37 families: 30 mammal, 13 bird, 4 fish, 1 amphibian, and 1 reptile species. These spanned animals kept at the zoo, species occurring in the zoo surroundings, and species used as feed in the zoo. The detected species comprise a range of taxonomic orders and families, sizes, behaviors, and abundances. We found shorter distance to the air sampling device and higher animal biomass to increase the probability of detection. We hereby show that airborne eDNA can offer a fundamentally new way of studying and monitoring terrestrial communities.


Subject(s)
DNA, Environmental , Animals , Biodiversity , DNA Barcoding, Taxonomic/methods , DNA, Environmental/genetics , Ecosystem , Environmental Monitoring/methods , Humans , Mammals/genetics , Vertebrates/genetics
2.
J Chem Phys ; 154(16): 164307, 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33940839

ABSTRACT

The vibrational spectra of gas phase tert-butyl hydroperoxide have been recorded in the OH-stretching fundamental and overtone regions (ΔvOH = 1-5) at room temperature using conventional Fourier transform infrared (ΔvOH = 1-3) and cavity ring-down (ΔvOH = 4-5) spectroscopy. In hydroperoxides, the OH-stretching and COOH torsion vibrations are strongly coupled. The double-well nature of the COOH torsion potential leads to tunneling splitting of the energy levels and, combined with the low frequency of the torsional vibration, results in spectra in the OH-stretching regions with multiple vibrational transitions. In each of the OH-stretching regions, both an OH-stretching and a stretch-torsion combination feature are observed, and we show direct evidence for the tunneling splitting in the OH-stretching fundamental region. We have developed two complementary vibrational models to describe the spectra of the OH-stretching regions, a reaction path model and a reduced dimensional local mode model, both of which describe the features of the vibrational spectra well. We also explore the torsional dependence of the OH-stretching transition dipole moment and show that a Franck-Condon treatment fails to capture the intensity in the region of the stretch-torsion combination features. The accuracy of the Franck-Condon treatment of these features improves with increasing ΔvOH.

3.
J Chem Phys ; 154(16): 164306, 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33940856

ABSTRACT

The infrared (IR) spectrum of tert-butyl hydroperoxide (TBHP) in the region of the first OH-stretching overtone has been observed under jet-cooled and thermal (300 K, 3 Torr) conditions at ∼7017 cm-1. The jet-cooled spectrum is recorded by IR multiphoton excitation with UV laser-induced fluorescence detection of OH radical products, while direct IR absorption is utilized under thermal conditions. Prior spectroscopic studies of TBHP and other hydroperoxides have shown that the OH-stretch and XOOH (X = H or C) torsion vibrations are strongly coupled, resulting in a double well potential associated with the torsional motion about the OO bond that is different for each of the OH-stretching vibrational states. A low barrier between the wells on the torsional potential results in tunneling split energy levels, which leads to four distinct transitions associated with excitation of the coupled OH-stretch-torsion states. In order to interpret the experimental results, two theoretical models are used that include the OH-stretch-torsion coupling in TBHP. Both methods are utilized to compute the vibrational transitions associated with the coupled OH-stretch-torsion states of TBHP, revealing the underlying transitions that compose the experimentally observed features. A comparison between theory and experiment illustrates the necessity for treatments that include OH-stretch and COOH torsion in order to unravel the spectral features observed in the first OH-stretching overtone region of TBHP.

SELECTION OF CITATIONS
SEARCH DETAIL
...