Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Environ Microbiol ; 72(3): 1932-8, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16517640

ABSTRACT

A high biomasses of Cladophora, a filamentous green alga, is found mainly during the summer along the shores of Lake Michigan. In this study, the abundance and persistence of the fecal indicator bacterium Escherichia coli and sulfate-reducing bacteria (SRB) on Cladophora mats collected at Lake Michigan beaches were evaluated using both culture-based and molecular analyses. Additionally, 16S rRNA gene cloning and sequencing were used to examine the bacterial community composition. Overall, E. coli was detected in all 63 samples obtained from 11 sites, and the average levels at most beaches ranged from 2,700 CFU/100 g (wet weight) of Cladophora to 7,500 CFU/100 g of Cladophora. However, three beaches were found to have site average E. coli densities of 12,800, 21,130, and 27,950 CFU/100 g of Cladophora. The E. coli levels in the lake water collected at the same time from these three sites were less than the recommended U.S. Environmental Protection Agency limit, 235 CFU/100 ml. E. coli also persisted on Cladophora mats in microcosms at room temperature for more than 7 days, and in some experiments it persisted for as long as 28 days. The SRB densities on Cladophora mats were relatively high, ranging from 4.4x10(6) cells/g (6.64 log CFU/g) to 5.73x10(6) cells/g (6.76 log CFU/g) and accounting for between 20% and 27% of the total bacterial counts. Partial sequences of the 16S rRNA gene clones revealed a phylogenetically diverse community, in which the Cytophaga-Flavobacterium-Bacteroides cluster and the low-G+C-content gram-positive bacteria were the dominant organisms, accounting for 40% and 12.8%, respectively, of the total clone library. These results further reveal the potential public health and ecological significance of Cladophora mats that are commonly found along the shoreline of Lake Michigan, especially with regard to the potential to harbor microorganisms associated with fecal pollution and odor-causing bacteria.


Subject(s)
Bathing Beaches , Chlorophyta/microbiology , Ecosystem , Feces/microbiology , Fresh Water/microbiology , Soil Microbiology , Chlorophyta/growth & development , Colony Count, Microbial , DNA, Bacterial/analysis , Escherichia coli/isolation & purification , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sulfur-Reducing Bacteria/isolation & purification , Wisconsin
2.
Appl Environ Microbiol ; 71(12): 8305-13, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16332817

ABSTRACT

Lake Michigan surface waters impacted by fecal pollution were assessed to determine the occurrence of genetic markers for Bacteroides and Escherichia coli. Initial experiments with sewage treatment plant influent demonstrated that total Bacteroides spp. could be detected by PCR in a 25- to 125-fold-higher dilution series than E. coli and human-specific Bacteroides spp., which were both found in similar dilution ranges. The limit of detection for the human-specific genetic marker ranged from 0.2 CFU/100 ml to 82 CFU/100 ml culturable E. coli for four wastewater treatment plants in urban and rural areas. The spatial and temporal distributions of these markers were assessed following major rain events that introduced urban storm water, agricultural runoff, and sewage overflows into Lake Michigan. Bacteroides spp. were detected in all of these samples by PCR, including those with <1 CFU/100 ml E. coli. Human-specific Bacteroides spp. were detected as far as 2 km into Lake Michigan during sewage overflow events, with variable detection 1 to 9 days postoverflow, whereas the cow-specific Bacteroides spp. were detected in only highly contaminated samples near the river outflow. Lake Michigan beaches were also assessed throughout the summer season for the same markers. Bacteroides spp. were detected in all beach samples, including 28 of the 74 samples that did not exceed 235 CFU/100 ml of E. coli. Human-specific Bacteroides spp. were detected at three of the seven beaches; one of the sites demonstrating positive results was sampled during a reported sewage overflow, but E. coli levels were below 235 CFU/100 ml. This study demonstrates the usefulness of non-culture-based microbial-source tracking approaches and the prevalence of these genetic markers in the Great Lakes, including freshwater coastal beaches.


Subject(s)
Bacteroides/growth & development , Escherichia coli/growth & development , Feces/microbiology , Fresh Water/microbiology , Sewage/microbiology , Water Pollution , Bacteriological Techniques , Bacteroides/classification , Bacteroides/genetics , Bacteroides/isolation & purification , Base Sequence , DNA Primers , Escherichia coli/classification , Escherichia coli/genetics , Escherichia coli/isolation & purification , Geography , Humans , Phylogeny , Polymerase Chain Reaction , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Wisconsin
SELECTION OF CITATIONS
SEARCH DETAIL
...