Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Toxics ; 11(11)2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37999581

ABSTRACT

Technological development has increased the use of chemical elements that have hitherto received scant scientific attention as environmental contaminants. Successful management of these rare trace elements (RTEs) requires elucidation of their mobility in the soil-plant system. We aimed to determine the capacity of Lolium perenne (a common pasture species) to tolerate and accumulate the RTEs Be, Ga, In, La, Ce, Nd, and Gd in a fluvial recent soil. Cadmium was used as a reference as a well-studied contaminant that is relatively mobile in the soil-plant system. Soil was spiked with 2.5-283 mg kg-1 of RTE or Cd salts, representing five, 10, 20, and 40 times their background concentrations in soil. For Be, Ce, In, and La, there was no growth reduction, even at the highest soil concentrations (76, 1132, 10.2, and 874 mg kg-1, respectively), which resulted in foliar concentrations of 7.1, 12, 0.11, and 50 mg kg-1, respectively. The maximum no-biomass reduction foliar concentrations for Cd, Gd, Nd, and Ga were 0.061, 0.1, 7.1, and 11 mg kg-1, respectively. Bioaccumulation coefficients ranged from 0.0030-0.95, and increased Ce < In < Nd ≅ Gd < La ≅ Be ≅ Ga < Cd. Beryllium and La were the RTEs most at risk of entering the food chain via L. perenne, as their toxicity thresholds were not reached in the ranges tested, and the bioaccumulation coefficient (plant/soil concentration quotient) trends indicated that uptake would continue to increase at higher soil concentrations. In contrast, In and Ce were the elements least likely to enter the food chain. Further research should repeat the experiments in different soil types or with different plant species to test the robustness of the findings.

2.
J Environ Qual ; 48(5): 1517-1523, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31589720

ABSTRACT

Iodine (I) is an essential trace element commonly deficient in agricultural systems. Whereas there is much information on I in food crops, there is a lacuna of knowledge on the environmental factors that affect pasture I concentrations. We aimed to identify the most important environmental factors affecting the concentration of I in New Zealand pastures, and the consequences to agricultural systems. Soil and pastoral samples were collected throughout the country and analyzed for I and other elements. The soils contained 1.1 to 86 mg I kg, with 0.005 to 1.4 mg kg in the pasture. In 26% of pastures, I concentrations were insufficient for sheep nutrition, whereas 87% contained insufficient I for cattle nutrition. Pasture I concentrations were negatively correlated with the distance from the sea, and the concentration of oxalate-extractable amorphous Al, Fe, and Si oxides, which immobilize soil I. Soil organic C and clay increased I retention in soil but did not significantly affect pasture I concentrations. Future work should investigate how soil properties affect pasture I uptake in inland areas.


Subject(s)
Iodine , Soil Pollutants , Agriculture , Animals , Cattle , New Zealand , Sheep , Soil
3.
Chemosphere ; 209: 675-684, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29958163

ABSTRACT

Gallium (Ga) and indium (In) are increasingly susceptible to soil contamination via disposal of electronic equipment. Chemically similar to aluminium (Al), these elements may be mobile and bioavailable under acidic conditions. We sought to determine extent and nature of Ga and In mobility in the soil - plant system and thus their potential to enter the food chain. Batch sorption experiments on a high fertility silt loam (pH 5.95, CEC 22 meq 100 g-1) showed strong retention of both elements to the soil matrix, with mean distribution coefficient (KD) values of 408 and 2021 L kg-1 for Ga and In respectively. KD increased with concentration, which we attributed to precipitation of excess ions as insoluble hydroxides. KD decreased with increased pH as Ga/In(OH)2+ and Ga/In(OH)2+ transitioned to Ga/In(OH)4-. Movement into the aboveground portions of perennial ryegrass (Lolium perenne L.) was low, with bioaccumulation factors of 0.0037 for Ga and 0.0002 for In; foliar concentrations peaked at 11.6 mg kg-1 and 0.015 mg kg-1 respectively. The mobility of Ga and In in the soil - plant system is low compared to other common trace element contaminants such as cadmium, copper, and zinc. Therefore, Ga and In are likely to accumulate in soils and soil ingestion, either directly, via inhaled dust, or dust attached to food, will be the largest pathway into the food chain. Future work should focus on the effect of redox conditions on Ga and In, as well as uptake into acidophilic plants such as Camellia spp., which accumulate Al.


Subject(s)
Electronic Waste/analysis , Gallium/chemistry , Indium/chemistry , Plants/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...