Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; : 174768, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39009147

ABSTRACT

Wastewater Treatment Plants (WWTP) are a major repository and entrance path of nanoparticles (NP) in the environment and hence play a major role in the final fate and toxicity to biota of NP in the aquatic environment. Studies on silver nanoparticles (AgNP) transport via the WWTP system and uptake by aquatic biota have so far been carried out using unrealistically high AgNP concentrations, unlikely to be encountered in the aquatic environment. The use of high AgNP concentrations is necessitated by both the low sensitivity of the detection methods used and the need to distinguish background Ag from spiked AgNP. In this study, isotopically enriched 109AgNP were synthesized to overcome these shortcomings and characterized by a broad range of methods including transmission electron microscopy, dynamic and electrophoretic light scattering. 109AgNP and gold NP (AuNP) were spiked to a pilot wastewater treatment plant fed with municipal wastewater for up to 21 days. AuNP were used as chemically less reactive tracer. The uptake of the pristine and transformed NP present in the effluent was assessed using the benthic amphipod Hyalella azteca in fresh- and brackish water exposures at environmentally relevant concentrations of 30 to 500 ng Au/L and 39 to 260 ng Ag/L. The unique isotopic signature of the 109AgNP allowed to detect the material at environmentally relevant concentrations in the presence of a much higher natural Ag background. The results show that the transformations reduce the NP uptake at environmentally relevant exposure concentrations. For 109Ag, lower accumulation factors (AF) were obtained after exposure to transformed NP (250-350) compared to the AF values obtained for pristine 109AgNP (750-840). The reduced AF values observed for H. azteca exposed to effluent from the AuNP-spiked WWTP indicate that biological transformation processes (e.g. eco-corona formation) seem to be involved in addition to chemical transformation.

2.
J Environ Radioact ; 258: 107091, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36566703

ABSTRACT

Glubokoye Lake situated within the Chernobyl Exclusion Zone is highly contaminated with respect to radioactive caesium and strontium isotopes, which also is reflected in the contaminated fish. To utilize the fish resources in contaminated lakes, the present work presents for the first time the effectiveness of using clean feed to counteract contamination of radionuclides in fish. The study is based on a series of repeated experiments with Prussian carp (Carassius gibelio (Bloch, 1782)) kept in cages in the contaminated Glubokoye Lake during summer 2018-2021. By the addition of clean feed, the activity concentration of 137Cs in fish muscle tissues was lowered with a factor of 2-5 due to biodilution. Surprisingly, additional clean feed did not lead to further decrease in the uptake of 137Cs in fish. In contrast to 137Cs, the addition of clean feed increased the 90Sr activity concentration in fish by a factor of 2-4 compared to fish fed with naturally occurring feed items. Radioactive strontium accumulated mainly in the fish bones and the muscle tissue level was 2 orders of magnitude lower, similar to the distribution observed for stable Sr. By utilizing a new kinetic model describing the dynamics of strontium isotopes in bone tissues of fish, predictions fitted well with site-specific data, taking growth rates and aging into account. Results showed that clean feeding can be used to counteract high activity concentration of 137Cs in fish due to biodilution, but cannot counteract bioaccumulation of 90Sr. Findings highlighted that it is essential to understand underlying factors influencing the uptake pathways for contaminants, as access to clean feed could increase the growth and thereby reduce the body activity concentration of dietary associated radionuclides such as 137Cs (biodilution), as well as increase the transfer of dissolved compounds such as 90Sr directly from water to fish.


Subject(s)
Lakes , Radiation Monitoring , Animals , Radiation Monitoring/methods , Cesium Radioisotopes/analysis , Strontium Radioisotopes/analysis , Fishes
3.
Sci Total Environ ; 786: 147280, 2021 Sep 10.
Article in English | MEDLINE | ID: mdl-33965823

ABSTRACT

Dynamic transfer of radionuclides to fish was studied in a series of experiments under field condition in two lakes within the Chernobyl exclusion zone during 2016-2020. "Clean" common rudd (Scardinius erythrophthalmus) and silver Prussian carp (Carassius gibelio) were transported to the contaminated Glubokoye Lake and kept in cages during several months of exposure, while contaminated Glubokoye fish were kept in cages in the "clean" Starukha Lake. Radiocaesium (137Cs) and radiostrontium (90Sr) were determined in intestine contents, muscle and bone tissues based on repeated samples during several months of exposure. During summer, the activity concentrations of 137Cs and 90Sr increased with time of exposure in clean fish caged in the contaminated lake. During autumn and winter, however, minor changes in fish uptake occurred during several weeks of exposure to the contaminated water. Furthermore, depuration in the contaminated fish was significant during summer, while insignificant during winter when exposed in the «clean¼ water. The rate constant of 137Cs uptake in muscle was between 8.0 and 22 day-1 during summer, while 0.2 to 1.0 day-1 during autumn-winter. Similarly, the rate constant of 90Sr uptake in bone was between 1.4 and 1.6 day-1, while 0.08-0.52 day-1 during autumn-winter. Biological half-lives of 137Cs in fish muscle tissue in summer were 77 ± 10 days, while exceeded 230 days during seasons at low water temperature. The results demonstrated that the transfer of 137Cs and 90Sr to fish was highly dependent upon seasons, in particular the water temperature. The transfer data obtained during low water temperature seasons deviated significantly from transfer data in literature and handbooks. Thus, seasonal changes in radionuclide transfer to fish should be taken into account when radiological impact to fish is assessed.


Subject(s)
Carps , Animals , Cesium Radioisotopes , Seasons , Silver , Strontium Radioisotopes
4.
Aquat Toxicol ; 201: 198-206, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29966918

ABSTRACT

High concentrations of cadmium in brown crab are an issue of food safety, and large variations between different areas have been found. To investigate the relative importance of dietary and aqueous uptake regarding the overall accumulation in brown crab, we used stable isotopes to trace the uptake from both routes simultaneously in the same animals. We demonstrated that the analytical challenges regarding background concentrations of natural isotope distribution and polyatomic interferences in the different matrices can be overcome with an appropriate analytical setup and modern mathematical corrections using a computer software. Cadmium was accumulated via both routes and was found in all measured organs at the end of the exposure phase. The obtained data were used to establish accumulation curves for both uptake routes and estimate accumulation parameters for hepatopancreas, as the most important organ in crab regarding total cadmium body burden. Using the estimated parameters in combination with naturally relevant cadmium concentrations in seawater and diet in a model, allowed us to predict the relative importance of the aqueous and dietary uptake route to the total hepatopancreas burden. According to the prediction, the dietary route is the main route of uptake in brown crab with a minimum of 98% of the accumulated cadmium in hepatopancreas originating from diet. Future studies addressing the source and accumulation of cadmium in crab should therefore focus on the uptake from feed and factors connected to foraging.


Subject(s)
Brachyura/metabolism , Cadmium/analysis , Environmental Monitoring/methods , Animals , Biological Transport , Brachyura/drug effects , Female , Hepatopancreas/drug effects , Hepatopancreas/metabolism , Isotopes , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...