Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Prod Commun ; 11(1): 39-43, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26996016

ABSTRACT

Sterols are essential to insects because they are vital for many biochemical processes, nevertheless insects cannot synthesize sterols but have to acquire them through their diet. Studies of sterols in ants are sparse and here the sterols of the weaver ant genus Oecophylla are identified for the first time. The sterol profile and the dietary sterols provided to a laboratory Oecophylla longinoda colony were analyzed. Most sterols originated from the diet, except one, which was probably formed via dealkylation in the ants and two sterols of fungal origin, which likely originate from hitherto unidentified endosymbionts responsible for supplying these two compounds. The sterol profile of a wild Oecophylla smaragdina colony was also investigated. Remarkable qualitative similarities were established between the two species despite the differences in diet, species, and origin. This may reflect a common sterol need/aversion in the weaver ants. Additionally, each individual caste of both species displayed unique sterol profiles.


Subject(s)
Ants/classification , Ants/metabolism , Sterols/metabolism , Animals , Gas Chromatography-Mass Spectrometry , Molecular Structure , Sterols/chemistry
2.
Pest Manag Sci ; 68(9): 1311-6, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22566141

ABSTRACT

BACKGROUND: Gaseous ozone (O(3)) has potential for control of insects in stored grain. Previous studies have focused on freely exposed insects. Immatures of internal pests (e.g. Sitophilus spp. and most stages of Rhyzopertha dominica F.) are protected within kernels and probably require higher doses and/or longer treatment times for full control. A laboratory study determined the doses of ozone necessary for full control of freely exposed and internal stages of eleven stored-product pest species. Test insects were three species of Sitophilus, R. dominica, Tribolium confusum Jacquelin du Val, T. castaneum Herbst, Plodia interpunctella Hübner, Sitotroga cerealella Olivier, Oryzaephilus surinamensis L., Ephestia kuehniella Zeller and Stegobium paniceum L. Insects were exposed to continuous flows of ozone in doses of 10-135 ppm and exposure times of 5-8 days. Dose-mortality bioassays were conducted on three species of Sitophilus and P. interpunctella. RESULTS: Freely exposed stages (with a few exceptions) were controlled with 35 ppm of ozone for 6 days. Full mortality of internal stages within kernels required exposure to 135 ppm for 8 days. CONCLUSION: This study confirms that higher doses and/or longer treatment times are necessary for control of internal stages of stored-product pests.


Subject(s)
Coleoptera/drug effects , Edible Grain/parasitology , Insect Control/methods , Insecticides/toxicity , Moths/drug effects , Ozone/toxicity , Animals , Coleoptera/growth & development , Food Storage , Moths/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...