Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oncoimmunology ; 11(1): 2026020, 2022.
Article in English | MEDLINE | ID: mdl-35111385

ABSTRACT

Galectin-3 (Gal3) can be expressed by many cells in the tumor microenvironment (TME), including cancer cells, cancer-associated fibroblasts, tumor-associated macrophages, and regulatory T cells (Tregs). In addition to immunosuppression, Gal3 expression has been connected to malignant cell transformation, tumor progression, and metastasis. In the present study, we found spontaneous T-cell responses against Gal3-derived peptides in PBMCs from both healthy donors and cancer patients. We isolated and expanded these Gal3-specific T cells in vitro and showed that they could directly recognize target cells that expressed Gal3. Finally, therapeutic vaccination with a long Gal3-derived peptide epitope, which induced the expansion of Gal3-specific CD8+ T cells in vivo, showed a significant tumor-growth delay in mice inoculated with EO771.LMB metastatic mammary tumor cells. This was associated with a significantly lower percentage of both Tregs and tumor-infiltrating Gal3+ cells in the non-myeloid CD45+CD11b- compartment and with an alteration of the T-cell memory populations in the spleens of Gal3-vaccinated mice. These results suggest that by activating Gal3-specific T cells by an immune-modulatory vaccination, we can target Gal3-producing cells in the TME, and thereby induce a more immune permissive TME. This indicates that Gal3 could be a novel target for therapeutic cancer vaccines.


Subject(s)
Cancer Vaccines , Neoplasms , Animals , CD8-Positive T-Lymphocytes/metabolism , Galectin 3/metabolism , Humans , Mice , Tumor Microenvironment , Vaccination , Vaccines, Subunit
2.
Semin Immunopathol ; 41(1): 49-58, 2019 01.
Article in English | MEDLINE | ID: mdl-30187086

ABSTRACT

Adoptive cell therapy (ACT) utilizing either tumor-infiltrating lymphocyte (TIL)-derived T cells or T cells genetically engineered to express tumor recognizing receptors has emerged as a powerful and potentially curative therapy for several cancers. Many ACT-based therapies have recently entered late-phase clinical testing, with several T cell therapies already achieving regulatory approval for the treatment of patients with B cell malignancies. In this review, we briefly outline the principles of adoptively transferred T cells for the treatment of cancer.


Subject(s)
Immunotherapy, Adoptive , Neoplasms/immunology , Neoplasms/therapy , T-Lymphocytes/immunology , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Genetic Engineering , Humans , Immunotherapy, Adoptive/methods , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Neoplasms/metabolism , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , T-Cell Antigen Receptor Specificity/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...