Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Zoonoses Public Health ; 70(6): 473-484, 2023 09.
Article in English | MEDLINE | ID: mdl-37248739

ABSTRACT

Ixodes ricinus ticks are Scandinavia's main vector for tick-borne encephalitis virus (TBEV), which infects many people annually. The aims of the present study were (i) to obtain information on the TBEV prevalence in host-seeking I. ricinus collected within the Øresund-Kattegat-Skagerrak (ØKS) region, which lies in southern Norway, southern Sweden and Denmark; (ii) to analyse whether there are potential spatial patterns in the TBEV prevalence; and (iii) to understand the relationship between TBEV prevalence and meteorological factors in southern Scandinavia. Tick nymphs were collected in 2016, in southern Scandinavia, and screened for TBEV, using pools of 10 nymphs, with RT real-time PCR, and positive samples were confirmed with pyrosequencing. Spatial autocorrelation and cluster analysis was performed with Global Moran's I and SatScan to test for spatial patterns and potential local clusters of the TBEV pool prevalence at each of the 50 sites. A climatic analysis was made to correlate parameters such as minimum, mean and maximum temperature, relative humidity and saturation deficit with TBEV pool prevalence. The climatic data were acquired from the nearest meteorological stations for 2015 and 2016. This study confirms the presence of TBEV in 12 out of 30 locations in Denmark, where six were from Jutland, three from Zealand and two from Bornholm and Falster counties. In total, five out of nine sites were positive from southern Sweden. TBEV prevalence of 0.7%, 0.5% and 0.5%, in nymphs, was found at three sites along the Oslofjord (two sites) and northern Skåne region (one site), indicating a potential concern for public health. We report an overall estimated TBEV prevalence of 0.1% in questing I. ricinus nymphs in southern Scandinavia with a region-specific prevalence of 0.1% in Denmark, 0.2% in southern Sweden and 0.1% in southeastern Norway. No evidence of a spatial pattern or local clusters was found in the study region. We found a strong correlation between TBEV prevalence in ticks and relative humidity in Sweden and Norway, which might suggest that humidity has a role in maintaining TBEV prevalence in ticks. TBEV is an emerging tick-borne pathogen in southern Scandinavia, and we recommend further studies to understand the TBEV transmission potential with changing climate in Scandinavia.


Subject(s)
Encephalitis Viruses, Tick-Borne , Encephalitis, Tick-Borne , Ixodes , Animals , Prevalence , Seasons , Encephalitis, Tick-Borne/epidemiology , Encephalitis, Tick-Borne/veterinary , Scandinavian and Nordic Countries/epidemiology , Meteorological Concepts , Nymph
2.
Int J Parasitol Parasites Wildl ; 16: 175-182, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34660192

ABSTRACT

Raccoon dogs have successfully invaded Europe, including Denmark. Raccoon dogs are potential vectors and reservoir hosts of several zoonotic pathogens and thus have the potential for posing a threat to both human and animal health. This study includes analysis of four zoonotic parasites, 16 tick-borne pathogens and two pathogen groups from 292 raccoon dogs collected from January 2018 to December 2018. The raccoon dogs were received as a part of the Danish national wildlife surveillance program and were hunted, found dead or road killed. The raccoon dogs were screened for Alaria alata and Echinococcus multilocularis eggs in faeces by microscopy and PCR, respectively, Trichinella spp. larvae in muscles by digestion, antibodies against Toxoplasma gondii by ELISA and screening of ticks for pathogens by fluidigm real-time PCR. All raccoon dogs tested negative for E. multilocularis and Trichinella spp., while 32.9% excreted A. alata eggs and 42.7% were T. gondii sero-positive. Five tick-borne pathogens were identified in ticks collected from 15 raccoon dogs, namely Anaplasma phagocytophilum (20.0%), Babesia venatorum (6.7%), Borrelia miyamotoi (6.7%), Neoehrlichia mikurensis (6.7%) and Rickettsia helvetica (60.0%). We identified raccoon dogs from Denmark as an important reservoir of T. gondii and A. alata infection to other hosts, including humans, while raccoon dogs appear as a negligible reservoir of E. multilocularis and Trichinella spp. infections. Our results suggest that raccoon dogs may be a reservoir of A. phagocytophilum.

3.
Sci Rep ; 10(1): 19376, 2020 11 09.
Article in English | MEDLINE | ID: mdl-33168841

ABSTRACT

Tick-borne pathogens cause diseases in animals and humans, and tick-borne disease incidence is increasing in many parts of the world. There is a need to assess the distribution of tick-borne pathogens and identify potential risk areas. We collected 29,440 tick nymphs from 50 sites in Scandinavia from August to September, 2016. We tested ticks in a real-time PCR chip, screening for 19 vector-associated pathogens. We analysed spatial patterns, mapped the prevalence of each pathogen and used machine learning algorithms and environmental variables to develop predictive prevalence models. All 50 sites had a pool prevalence of at least 33% for one or more pathogens, the most prevalent being Borrelia afzelii, B. garinii, Rickettsia helvetica, Anaplasma phagocytophilum, and Neoehrlichia mikurensis. There were large differences in pathogen prevalence between sites, but we identified only limited geographical clustering. The prevalence models performed poorly, with only models for R. helvetica and N. mikurensis having moderate predictive power (normalized RMSE from 0.74-0.75, R2 from 0.43-0.48). The poor performance of the majority of our prevalence models suggest that the used environmental and climatic variables alone do not explain pathogen prevalence patterns in Scandinavia, although previously the same variables successfully predicted spatial patterns of ticks in the same area.


Subject(s)
Ixodes/physiology , Models, Biological , Tick Infestations/epidemiology , Tick-Borne Diseases/epidemiology , Animals , Humans , Prevalence , Scandinavian and Nordic Countries/epidemiology
5.
Sci Data ; 7(1): 238, 2020 07 16.
Article in English | MEDLINE | ID: mdl-32678090

ABSTRACT

Ticks carry pathogens that can cause disease in both animals and humans, and there is a need to monitor the distribution and abundance of ticks and the pathogens they carry to pinpoint potential high risk areas for tick-borne disease transmission. In a joint Scandinavian study, we measured Ixodes ricinus instar abundance at 159 sites in southern Scandinavia in August-September, 2016, and collected 29,440 tick nymphs at 50 of these sites. We additionally measured abundance at 30 sites in August-September, 2017. We tested the 29,440 tick nymphs in pools of 10 in a Fluidigm real-time PCR chip to screen for 17 different tick-associated pathogens, 2 pathogen groups and 3 tick species. We present data on the geolocation, habitat type and instar abundance of the surveyed sites, as well as presence/absence of each pathogen in all analysed pools from the 50 collection sites and individual prevalence for each site. These data can be used alone or in combination with other data for predictive modelling and mapping of high-risk areas.


Subject(s)
Animal Distribution , Ixodes/microbiology , Animals , Ecosystem , Nymph/microbiology , Scandinavian and Nordic Countries
6.
Parasit Vectors ; 12(1): 338, 2019 Jul 09.
Article in English | MEDLINE | ID: mdl-31288866

ABSTRACT

The taiga tick, Ixodes persulcatus, has previously been limited to eastern Europe and northern Asia, but recently its range has expanded to Finland and northern Sweden. The species is of medical importance, as it, along with a string of other pathogens, may carry the Siberian and Far Eastern subtypes of tick-borne encephalitis virus. These subtypes appear to cause more severe disease, with higher fatality rates than the central European subtype. Until recently, the meadow tick, Dermacentor reticulatus, has been absent from Scandinavia, but has now been detected in Denmark, Norway and Sweden. Dermacentor reticulatus carries, along with other pathogens, Babesia canis and Rickettsia raoultii. Babesia canis causes severe and often fatal canine babesiosis, and R. raoultii may cause disease in humans. We collected 600 tick nymphs from each of 50 randomly selected sites in Denmark, southern Norway and south-eastern Sweden in August-September 2016. We tested pools of 10 nymphs in a Fluidigm real time PCR chip to screen for I. persulcatus and D. reticulatus, as well as tick-borne pathogens. Of all the 30,000 nymphs tested, none were I. persulcatus or D. reticulatus. Our results suggest that I. persulcatus is still limited to the northern parts of Sweden, and have not expanded into southern parts of Scandinavia. According to literature reports and supported by our screening results, D. reticulatus may yet only be an occasional guest in Scandinavia without established populations.


Subject(s)
Dermacentor/physiology , Ixodes/physiology , Animal Distribution , Animals , Arthropod Vectors/microbiology , Arthropod Vectors/parasitology , Babesiosis/prevention & control , Dermacentor/microbiology , Dermacentor/parasitology , Dogs , Encephalitis, Tick-Borne/prevention & control , Epidemiological Monitoring , Grassland , Ixodes/microbiology , Ixodes/parasitology , Norway/epidemiology , Nymph/virology , Scandinavian and Nordic Countries/epidemiology , Sweden/epidemiology , Tick Infestations/epidemiology , Tick-Borne Diseases/prevention & control
7.
Arthropod Struct Dev ; 47(1): 104-116, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29199046

ABSTRACT

A unique pattern of missing defence glands on certain body rings is described for two species of the millipede family Mongoliulidae, order Julida: Ussuriiulus pilifer Golovatch, 1980, and Koiulus interruptus Enghoff et al., 2017. Based on the patterns of missing glands observed in recently collected samples of the two species, numbers of podous and apodous body rings in successive stadia of the postembryonic development can be inferred for each individual millipede, which in turn allows the reconstruction of pathways of anamorphosis in these species. The inferred numbers of body rings in developmental stadia are compared with actual numbers observed on additional samples, including the type series, of U. pilifer. The pattern of missing glands in the two mongoliulid species is compared with the pattern of missing glands typical of the entire millipede order Polydesmida.


Subject(s)
Arthropods/anatomy & histology , Arthropods/growth & development , Animals , Female , Male , Russia
SELECTION OF CITATIONS
SEARCH DETAIL
...