Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 7(6): 3649-3657, 2016 Jun 01.
Article in English | MEDLINE | ID: mdl-29997856

ABSTRACT

Oxadendralenes are integrated in a novel manner into a one-pot cascade utilizing synergistic catalysis for the construction of valuable and complex bicyclic heterocyclic scaffolds. The construction is based on the organocatalytic activation of the oxadendralenes generating a vinylogous iminium-ion intermediate which is set-up for a 1,6-addition with an enamine formed from an aldehyde and the same organocatalyst. This reaction generates a cyclic oxadendralenic intermediate, which acts as an electron-deficient heterodiene reacting in a Lewis-acid catalyzed hetero-Diels-Alder reaction with vinyl ethers to form tetrahydroisochromenes with five continuous stereocenters in high yields, >20 : 1 dr and 99% ee. This synergistic organo- and Lewis-acid catalysed system also displays high tolerance for variation in oxadendralenes and aldehydes, which provides tetrahydroisochromenes with high diversity in the substituent pattern and the same excellent stereoselectivities. Mechanistic studies have been performed to account for the activation modes and stereochemical outcome of the reaction. The reaction concept has been extended to also include a sequential organocatalytic reaction of oxadendralenes with aldehydes, in which the enamine formed from the aldehyde and the organocatalyst act both in the first catalytic cycle forming the cyclic oxadendralenic intermediate and in a second catalytic cycle leading to tetrahydroisochromenes in good yields and excellent stereoselectivities. Mechanistic studies reveal that the stereochemistry of the organocatalyst has an influence on the diastereoselectivity of the reaction sequence. Some transformations of the tetrahydroisochromenes are also presented. The chiral tetrahydroisochromenes formed might be applied in the diversified synthesis of important drugs.

2.
Angew Chem Int Ed Engl ; 54(46): 13630-4, 2015 Nov 09.
Article in English | MEDLINE | ID: mdl-26457897

ABSTRACT

A general organocatalytic cross-dienamine activation strategy to produce chiral multifunctionalized norcamphor compounds having a large diversity in substitution pattern is presented. The strategy is based on a Diels-Alder reaction of an amino-activated cyclopentenone reacting with most common classes of electron-deficient olefins, such as nitro-, ester-, amide-, and cyano-substituted olefins, chalcones, conjugated malononitriles, CF3-substituted enones, and fumarates. The corresponding norcamphor derivatives are formed in good yield, excellent enantioselectivities, and with complete diastereoselectivity. Furthermore, it is demonstrated that quaternary stereocenters and spiro norcamphor compounds can be formed with high stereoselectivity. The present development provides a simple, direct, and efficient approach for the preparation of important norcamphor scaffolds.

3.
Chem Commun (Camb) ; 49(57): 6382-4, 2013 Jul 21.
Article in English | MEDLINE | ID: mdl-23748437

ABSTRACT

Highly regio- and stereoselective remote aziridination of 2,4-dienals has been developed, based on a vinylogous iminium-ion-dienamine catalytic cascade reaction. Transformations of the aziridine products into enantioenriched motifs are also demonstrated. Furthermore, the reaction concept is extended to include enantioselective 1,6-addition of thiols.

SELECTION OF CITATIONS
SEARCH DETAIL
...