Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Waste Manag ; 67: 375-384, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28571663

ABSTRACT

Whole-site emissions of methane and nitrous oxide, from a combined dry anaerobic digestion and composting facility treating biowaste, were quantified using a tracer dispersion technique that combines a controlled tracer gas release from the treatment facility with time-resolved concentration measurements downwind of the facility. Emission measurements were conducted over a period of three days, and in total, 80 plume traverses were obtained. On-site screening showed that important processes resulting in methane emissions were aerobic composting reactors, anaerobic digester reactors, composting windrows and the site's biofilter. Average whole-site methane emissions measured during the three days were 27.5±7.4, 28.5±6.1 and 30.1±11.4kg CH4 h-1, respectively. Turning the windrows resulted in an increase in methane emission from about 26.3-35.9kg CH4 h-1. Lower emissions (21.5kg CH4 h-1) were measured after work hours ended, in comparison to emissions measured during the facility's opening hours (30.2kg CH4 h-1). Nitrous oxide emission was too small for a downwind quantification. Direct on-site measurements, however, suggested that the main part of the emitted nitrous oxide came from the biofilter (about 1.4kg N2O h-1). Whole-site emissions were compared to emissions previously measured at different point sources on-site. Whole-site fugitive emissions were three to eight times higher than the sum of emissions measured at on-site sources. The magnitude of the emissions had a significant influence on the overall environmental impact of the treatment facility, assessed by consequential life cycle assessment. Including the higher whole-site fugitive emissions led to an increase in global warming potential, from a saving of 97kgCO2-eq.tonne-1 of treated waste (wet weight) to a loading of 71kg CO2-eq. tonne-1, ultimately flipping the environmental profile of the treatment facility.


Subject(s)
Global Warming , Methane , Nitrous Oxide , Carbon Dioxide , Soil
2.
Waste Manag ; 66: 23-35, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28427738

ABSTRACT

The fate of total solids, volatile solids, total organic carbon, fossil carbon, biogenic carbon and 17 substances (As, Ca, CaCO3, Cd, Cl, Cr, Cu, H, Hg, K, Mg, N, Ni, O, P, Pb, S, Zn) in a combined dry anaerobic digestion and post-composting facility were assessed. Mass balances showed good results with low uncertainties for non-volatile substances, while balances for nitrogen, carbon, volatile solids and total organic carbon showed larger but reasonable uncertainties, due to volatilisation and emissions into the air. Material and substance flow analyses were performed in order to obtain transfer coefficients for a combined dry anaerobic digestion and post-composting facility. All metals passed through the facility and ended up in compost or residues, but all concentrations of metals in the compost complied with legislation. About 23% of the carbon content of the organic waste was transferred to the biogas, 24% to the compost, 13% to residues and 40% into the atmosphere. For nitrogen, 69% was transferred to the compost, 10% volatilised to the biofilter, 11% directly into the atmosphere and 10% to residues. Finally, a full life cycle inventory was conducted for the combined dry anaerobic digestion and post-composting facility, including waste received, fuel consumption, energy use, gaseous emissions, products, energy production and chemical composition of the compost produced.


Subject(s)
Biofuels , Composting , Carbon , Gases , Nitrogen , Refuse Disposal , Soil
3.
Waste Manag ; 49: 491-504, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26856446

ABSTRACT

This study assessed the management of the organic household waste in the Danish-German border region and points out major differences between the systems and their potential effects on the environment using life cycle assessment (LCA). The treatment of organic waste from households in the Danish-German border region is very different on each side of the border; the Danish region only uses incineration for the treatment of organic household waste while the German region includes combined biogas production and composting, mechanical and biological treatment (MBT) and incineration. Data on all parts of the organic waste treatment was collected including waste composition data and data from treatment facilities and their respective energy systems. Based on that the organic waste management systems in the border region were modelled using the EASETECH waste management LCA-model. The main output is a life cycle assessment showing large differences in the environmental performance of the two different regions with the Danish region performing better in 10 out of 14 impact categories. Furthermore, the importance of the substituted district heating systems was investigated showing an impact up to 34% of the entire system for one impact category and showing large difference between each heating system substituted, e.g. in "Global Warming" the impact was from -16 to -1.1 milli person equivalent/tonne treated waste from substitution of centralised hard coal and decentralised natural gas, respectively.


Subject(s)
Solid Waste/analysis , Waste Management/methods , Anaerobiosis , Bioreactors , Denmark , Germany , Incineration , Refuse Disposal/standards
4.
Waste Manag ; 36: 12-23, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25483613

ABSTRACT

Sound waste management and optimisation of resource recovery require reliable data on solid waste generation and composition. In the absence of standardised and commonly accepted waste characterisation methodologies, various approaches have been reported in literature. This limits both comparability and applicability of the results. In this study, a waste sampling and sorting methodology for efficient and statistically robust characterisation of solid waste was introduced. The methodology was applied to residual waste collected from 1442 households distributed among 10 individual sub-areas in three Danish municipalities (both single and multi-family house areas). In total 17 tonnes of waste were sorted into 10-50 waste fractions, organised according to a three-level (tiered approach) facilitating comparison of the waste data between individual sub-areas with different fractionation (waste from one municipality was sorted at "Level III", e.g. detailed, while the two others were sorted only at "Level I"). The results showed that residual household waste mainly contained food waste (42 ± 5%, mass per wet basis) and miscellaneous combustibles (18 ± 3%, mass per wet basis). The residual household waste generation rate in the study areas was 3-4 kg per person per week. Statistical analyses revealed that the waste composition was independent of variations in the waste generation rate. Both, waste composition and waste generation rates were statistically similar for each of the three municipalities. While the waste generation rates were similar for each of the two housing types (single-family and multi-family house areas), the individual percentage composition of food waste, paper, and glass was significantly different between the housing types. This indicates that housing type is a critical stratification parameter. Separating food leftovers from food packaging during manual sorting of the sampled waste did not have significant influence on the proportions of food waste and packaging materials, indicating that this step may not be required.


Subject(s)
Refuse Disposal/standards , Solid Waste/analysis , Waste Management/methods , Waste Management/standards , Cities , Denmark
SELECTION OF CITATIONS
SEARCH DETAIL
...