Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 670: 569-575, 2019 Jun 20.
Article in English | MEDLINE | ID: mdl-30909034

ABSTRACT

Advancements in drone technology have seen the development of drone-assisted water sampling payloads resulting in the ability of drones to retrieve water samples and physico-chemical data from aquatic ecosystems. The application of drones for water sampling provides the potential to fulfil many aspects of the biological and physico-chemical sampling required to meet large-scale water sampling programmes. This paper reviews the achievements made in the development of drone platforms; advances in specially designed water sampling payloads; advances in incorporating off-the-shelf probes and the ability of drone-assisted water sampling payloads to capture water and physico-chemical data from freshwater environments. However, drone-assisted water sampling is still in its infancy and several key limitations include the small volume of water captured via drones to date, the low rate of successful sample capture and the legislative restrictions limiting the distance drones can be flown from the operator. Of critical importance, however, are the clear inconsistencies observed between water chemical parameters obtained using drone-assisted and traditional water sampling methods. Consequently, water samples and physico-chemical data obtained using drones may not provide the level of reliability and accuracy needed to meet the needs of large-scale water sampling programmes. Solutions aimed at addressing these limitations and developing the potential of drones to conduct water samples include: modifying larger drones with greater payload capacity, facilitating the capture of greater volumes of water; technological developments to increase success rates of water capture; planning fieldwork for operation beyond visual line of sight (BVLOS); employing real-time physico-chemical probes; and integrating robust statistical experimental designs. In addition, detailed cost benefit analyses are required to investigate if drones would result in a meaningful financial saving to water sampling programmes. However, it is envisaged that drone-assisted water sampling will act as a pivotal supporting tool if such current limitations can be addressed by future research.

2.
J Fish Biol ; 78(2): 449-65, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21284628

ABSTRACT

Diel vertical migration (DVM) of young-of-the-year (YOY) herring Clupea harengus and one of their major predators, pikeperch Sander lucioperca, was examined using bottom-mounted hydroacoustics in Himmerfjärden, a brackish bay of the Baltic Sea, in summer. In contrast to previous studies on DVM of C. harengus aggregated across size and age classes, YOY C. harengus showed a reverse DVM trajectory, deeper at night and, on average, shallower during the day. This pattern was observed consistently on five acoustic sampling occasions in 3 years and was corroborated by two out of three trawl surveys. Large acoustic targets (target strength >-33 dB, probably piscivorous S. lucioperca >45 cm) showed a classic DVM trajectory, shallow at night and deeper during the day. Variability in YOY C. harengus vertical distribution peaked at dawn and dusk, and their vertical distribution at midday was distinctly bimodal. This reverse DVM pattern was consistent with bioenergetic model predictions for YOY C. harengus which have rapid gut evacuation rates and do not feed at night. Reverse DVM also resulted in low spatial overlap with predators.


Subject(s)
Animal Migration , Appetitive Behavior , Energy Metabolism , Fishes/physiology , Acoustics , Animals , Periodicity , Predatory Behavior , Seawater/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...