Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
New Phytol ; 241(3): 1047-1061, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38087814

ABSTRACT

Woody biomass is a large carbon store in terrestrial ecosystems. In calculating biomass, tree stems are assumed to be solid structures. However, decomposer agents such as microbes and insects target stem heartwood, causing internal wood decay which is poorly quantified. We investigated internal stem damage across five sites in tropical Australia along a precipitation gradient. We estimated the amount of internal aboveground biomass damaged in living trees and measured four potential stem damage predictors: wood density, stem diameter, annual precipitation, and termite pressure (measured as termite damage in downed deadwood). Stem damage increased with increasing diameter, wood density, and termite pressure and decreased with increasing precipitation. High wood density stems sustained less damage in wet sites and more damage in dry sites, likely a result of shifting decomposer communities and their differing responses to changes in tree species and wood traits across sites. Incorporating stem damage reduced aboveground biomass estimates by > 30% in Australian savannas, compared to only 3% in rainforests. Accurate estimates of carbon storage across woody plant communities are critical for understanding the global carbon budget. Future biomass estimates should consider stem damage in concert with the effects of changes in decomposer communities and abiotic conditions.


Subject(s)
Ecosystem , Forests , Biomass , Australia , Trees , Wood , Carbon , Tropical Climate
2.
Glob Chang Biol ; 23(11): 4873-4883, 2017 11.
Article in English | MEDLINE | ID: mdl-28560838

ABSTRACT

Our ability to model global carbon fluxes depends on understanding how terrestrial carbon stocks respond to varying environmental conditions. Tropical forests contain the bulk of the biosphere's carbon. However, there is a lack of consensus as to how gradients in environmental conditions affect tropical forest carbon. Papua New Guinea (PNG) lies within one of the largest areas of contiguous tropical forest and is characterized by environmental gradients driven by altitude; yet, the region has been grossly understudied. Here, we present the first field assessment of aboveground biomass (AGB) across three main forest types of PNG using 193 plots stratified across 3,100-m elevation gradient. Unexpectedly, AGB had no direct relationship to rainfall, temperature, soil, or topography. Instead, natural disturbances explained most variation in AGB. While large trees (diameter at breast height > 50 cm) drove altitudinal patterns of AGB, resulting in a major peak in AGB (2,200-3,100 m) and some of the most carbon-rich forests at these altitudes anywhere. Large trees were correlated to a set of climatic variables following a hump-shaped curve. The set of "optimal" climatic conditions found in montane cloud forests is similar to that of maritime temperate areas that harbor the largest trees in the world: high ratio of precipitation to evapotranspiration (2.8), moderate mean annual temperature (13.7°C), and low intra-annual temperature range (7.5°C). At extreme altitudes (2,800-3,100 m), where tree diversity elsewhere is usually low and large trees are generally rare or absent, specimens from 18 families had girths >70 cm diameter and maximum heights 20-41 m. These findings indicate that simple AGB-climate-edaphic models may not be suitable for estimating carbon storage in forests where optimal climate niches exist. Our study, conducted in a very remote area, suggests that tropical montane forests may contain greater AGB than previously thought and the importance of securing their future under a changing climate is therefore enhanced.


Subject(s)
Altitude , Biomass , Climate , Forests , Trees/physiology , Climate Change , Papua New Guinea
3.
Ann Bot ; 97(6): 1017-44, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16520340

ABSTRACT

BACKGROUND AND AIMS: Plant cyanogenesis is the release of toxic cyanide from endogenous cyanide-containing compounds, typically cyanogenic glycosides. Despite a large body of phytochemical, taxonomic and ecological work on cyanogenic species, little is known of their frequency in natural plant communities. This study aimed to investigate the frequency of cyanogenesis in Australian tropical rainforests. Secondary aims were to quantify the cyanogenic glycoside content of tissues, to investigate intra-plant and intra-population variation in cyanogenic glycoside concentration and to appraise the potential chemotaxonomic significance of any findings in relation to the distribution of cyanogenesis in related taxa. METHODS: All species in six 200 m(2) plots at each of five sites across lowland, upland and highland tropical rainforest were screened for cyanogenesis using Feigl-Anger indicator papers. The concentrations of cyanogenic glycosides were accurately determined for all cyanogenic individuals. KEY RESULTS: Over 400 species from 87 plant families were screened. Overall, 18 species (4.5 %) were cyanogenic, accounting for 7.3 % of total stem basal area. Cyanogenesis has not previously been reported for 17 of the 18 species, 13 of which are endemic to Australia. Several species belong to plant families or orders in which cyanogenesis has been little reported, if at all (e.g. Elaeocarpaceae, Myrsinaceae, Araliaceae and Lamiaceae). A number of species contained concentrations of cyanogenic glycosides among the highest ever reported for mature leaves-up to 5.2 mg CN g(-1) d. wt, for example, in leaves of Elaeocarpus sericopetalus. There was significant variation in cyanogenic glycoside concentration within individuals; young leaves and reproductive tissues typically had higher cyanogen content. In addition, there was substantial variation in cyanogenic glycoside content within populations of single species. CONCLUSIONS: This study expands the limited knowledge of the frequency of cyanogenesis in natural plant communities, includes novel reports of cyanogenesis among a range of taxa and characterizes patterns in intra-plant and intra-population variation of cyanogensis.


Subject(s)
Hydrogen Cyanide/metabolism , Magnoliopsida/metabolism , Tropical Climate , Queensland
SELECTION OF CITATIONS
SEARCH DETAIL
...