Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Neural Netw ; 169: 417-430, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37931473

ABSTRACT

Deep generative models with latent variables have been used lately to learn joint representations and generative processes from multi-modal data, which depict an object from different viewpoints. These two learning mechanisms can, however, conflict with each other and representations can fail to embed information on the data modalities. This research studies the realistic scenario in which all modalities and class labels are available for model training, e.g. images or handwriting, but where some modalities and labels required for downstream tasks are missing, e.g. text or annotations. We show, in this scenario, that the variational lower bound limits mutual information between joint representations and missing modalities. We, to counteract these problems, introduce a novel conditional multi-modal discriminative model that uses an informative prior distribution and optimizes a likelihood-free objective function that maximizes mutual information between joint representations and missing modalities. Extensive experimentation demonstrates the benefits of our proposed model, empirical results show that our model achieves state-of-the-art results in representative problems such as downstream classification, acoustic inversion, and image and annotation generation.


Subject(s)
Discrimination Learning , Learning , Acoustics , Empirical Research , Handwriting
2.
Med Image Anal ; 89: 102870, 2023 10.
Article in English | MEDLINE | ID: mdl-37541101

ABSTRACT

A major barrier to applying deep segmentation models in the medical domain is their typical data-hungry nature, requiring experts to collect and label large amounts of data for training. As a reaction, prototypical few-shot segmentation (FSS) models have recently gained traction as data-efficient alternatives. Nevertheless, despite the recent progress of these models, they still have some essential shortcomings that must be addressed. In this work, we focus on three of these shortcomings: (i) the lack of uncertainty estimation, (ii) the lack of a guiding mechanism to help locate edges and encourage spatial consistency in the segmentation maps, and (iii) the models' inability to do one-step multi-class segmentation. Without modifying or requiring a specific backbone architecture, we propose a modified prototype extraction module that facilitates the computation of uncertainty maps in prototypical FSS models, and show that the resulting maps are useful indicators of the model uncertainty. To improve the segmentation around boundaries and to encourage spatial consistency, we propose a novel feature refinement module that leverages structural information in the input space to help guide the segmentation in the feature space. Furthermore, we demonstrate how uncertainty maps can be used to automatically guide this feature refinement. Finally, to avoid ambiguous voxel predictions that occur when images are segmented class-by-class, we propose a procedure to perform one-step multi-class FSS. The efficiency of our proposed methodology is evaluated on two representative datasets for abdominal organ segmentation (CHAOS dataset and BTCV dataset) and one dataset for cardiac segmentation (MS-CMRSeg dataset). The results show that our proposed methodology significantly (one-sided Wilcoxon signed rank test, p<0.05) improves the baseline, increasing the overall dice score with +5.2, +5.1, and +2.8 percentage points for the CHAOS dataset, the BTCV dataset, and the MS-CMRSeg dataset, respectively.


Subject(s)
Heart , Learning , Humans , Heart/diagnostic imaging , Image Processing, Computer-Assisted , Uncertainty
3.
Entropy (Basel) ; 25(6)2023 Jun 03.
Article in English | MEDLINE | ID: mdl-37372243

ABSTRACT

Analyzing deep neural networks (DNNs) via information plane (IP) theory has gained tremendous attention recently to gain insight into, among others, DNNs' generalization ability. However, it is by no means obvious how to estimate the mutual information (MI) between each hidden layer and the input/desired output to construct the IP. For instance, hidden layers with many neurons require MI estimators with robustness toward the high dimensionality associated with such layers. MI estimators should also be able to handle convolutional layers while at the same time being computationally tractable to scale to large networks. Existing IP methods have not been able to study truly deep convolutional neural networks (CNNs). We propose an IP analysis using the new matrix-based Rényi's entropy coupled with tensor kernels, leveraging the power of kernel methods to represent properties of the probability distribution independently of the dimensionality of the data. Our results shed new light on previous studies concerning small-scale DNNs using a completely new approach. We provide a comprehensive IP analysis of large-scale CNNs, investigating the different training phases and providing new insights into the training dynamics of large-scale neural networks.

4.
Comput Med Imaging Graph ; 107: 102239, 2023 07.
Article in English | MEDLINE | ID: mdl-37207397

ABSTRACT

Deep learning-based approaches for content-based image retrieval (CBIR) of computed tomography (CT) liver images is an active field of research, but suffer from some critical limitations. First, they are heavily reliant on labeled data, which can be challenging and costly to acquire. Second, they lack transparency and explainability, which limits the trustworthiness of deep CBIR systems. We address these limitations by: (1) Proposing a self-supervised learning framework that incorporates domain-knowledge into the training procedure, and, (2) by providing the first representation learning explainability analysis in the context of CBIR of CT liver images. Results demonstrate improved performance compared to the standard self-supervised approach across several metrics, as well as improved generalization across datasets. Further, we conduct the first representation learning explainability analysis in the context of CBIR, which reveals new insights into the feature extraction process. Lastly, we perform a case study with cross-examination CBIR that demonstrates the usability of our proposed framework. We believe that our proposed framework could play a vital role in creating trustworthy deep CBIR systems that can successfully take advantage of unlabeled data.


Subject(s)
Algorithms , Tomography, X-Ray Computed , Tomography, X-Ray Computed/methods , Liver/diagnostic imaging , Pattern Recognition, Automated/methods
5.
Article in English | MEDLINE | ID: mdl-35552141

ABSTRACT

Image translation with convolutional autoencoders has recently been used as an approach to multimodal change detection (CD) in bitemporal satellite images. A main challenge is the alignment of the code spaces by reducing the contribution of change pixels to the learning of the translation function. Many existing approaches train the networks by exploiting supervised information of the change areas, which, however, is not always available. We propose to extract relational pixel information captured by domain-specific affinity matrices at the input and use this to enforce alignment of the code spaces and reduce the impact of change pixels on the learning objective. A change prior is derived in an unsupervised fashion from pixel pair affinities that are comparable across domains. To achieve code space alignment, we enforce pixels with similar affinity relations in the input domains to be correlated also in code space. We demonstrate the utility of this procedure in combination with cycle consistency. The proposed approach is compared with the state-of-the-art machine learning and deep learning algorithms. Experiments conducted on four real and representative datasets show the effectiveness of our methodology.

6.
Med Image Anal ; 78: 102385, 2022 05.
Article in English | MEDLINE | ID: mdl-35272250

ABSTRACT

Recent work has shown that label-efficient few-shot learning through self-supervision can achieve promising medical image segmentation results. However, few-shot segmentation models typically rely on prototype representations of the semantic classes, resulting in a loss of local information that can degrade performance. This is particularly problematic for the typically large and highly heterogeneous background class in medical image segmentation problems. Previous works have attempted to address this issue by learning additional prototypes for each class, but since the prototypes are based on a limited number of slices, we argue that this ad-hoc solution is insufficient to capture the background properties. Motivated by this, and the observation that the foreground class (e.g., one organ) is relatively homogeneous, we propose a novel anomaly detection-inspired approach to few-shot medical image segmentation in which we refrain from modeling the background explicitly. Instead, we rely solely on a single foreground prototype to compute anomaly scores for all query pixels. The segmentation is then performed by thresholding these anomaly scores using a learned threshold. Assisted by a novel self-supervision task that exploits the 3D structure of medical images through supervoxels, our proposed anomaly detection-inspired few-shot medical image segmentation model outperforms previous state-of-the-art approaches on two representative MRI datasets for the tasks of abdominal organ segmentation and cardiac segmentation.


Subject(s)
Heart , Magnetic Resonance Imaging , Humans , Image Processing, Computer-Assisted , Semantics
7.
IEEE J Biomed Health Inform ; 26(4): 1794-1801, 2022 04.
Article in English | MEDLINE | ID: mdl-34665748

ABSTRACT

Surgical site infections are hospital-acquired infections resulting in severe risk for patients and significantly increased costs for healthcare providers. In this work, we show how to leverage irregularly sampled preoperative blood tests to predict, on the day of surgery, a future surgical site infection and its severity. Our dataset is extracted from the electronic health records of patients who underwent gastrointestinal surgery and developed either deep, shallow or no infection. We represent the patients using the concentrations of fourteen common blood components collected over the four weeks preceding the surgery partitioned into six time windows. A gradient boosting based classifier trained on our new set of features reports an AUROC of 0.991 for predicting a postoperative infection and and AUROC of 0.937 for classifying the severity of the infection. Further analyses support the clinical relevance of our approach as the most important features describe the nutritional status and the liver function over the two weeks prior to surgery.


Subject(s)
Electronic Health Records , Surgical Wound Infection , Forecasting , Humans , Risk Factors , Surgical Wound Infection/diagnosis
8.
J Cereb Blood Flow Metab ; 41(9): 2229-2241, 2021 09.
Article in English | MEDLINE | ID: mdl-33557691

ABSTRACT

Cerebral blood flow (CBF) can be measured with dynamic positron emission tomography (PET) of 15O-labeled water by using tracer kinetic modelling. However, for quantification of regional CBF, an arterial input function (AIF), obtained from arterial blood sampling, is required. In this work we evaluated a novel, non-invasive approach for input function prediction based on machine learning (MLIF), against AIF for CBF PET measurements in human subjects.Twenty-five subjects underwent two 10 min dynamic 15O-water brain PET scans with continuous arterial blood sampling, before (baseline) and following acetazolamide medication. Three different image-derived time-activity curves were automatically segmented from the carotid arteries and used as input into a Gaussian process-based AIF prediction model, considering both baseline and acetazolamide scans as training data. The MLIF approach was evaluated by comparing AIF and MLIF curves, as well as whole-brain grey matter CBF values estimated by kinetic modelling derived with either AIF or MLIF.The results showed that AIF and MLIF curves were similar and that corresponding CBF values were highly correlated and successfully differentiated before and after acetazolamide medication. In conclusion, our non-invasive MLIF method shows potential to replace the AIF obtained from blood sampling for CBF measurements using 15O-water PET and kinetic modelling.


Subject(s)
Cerebrovascular Circulation/physiology , Machine Learning/standards , Positron-Emission Tomography/methods , Water/metabolism , Humans , Retrospective Studies
9.
IEEE Trans Neural Netw Learn Syst ; 32(5): 2169-2179, 2021 05.
Article in English | MEDLINE | ID: mdl-32598284

ABSTRACT

Classification of multivariate time series (MTS) has been tackled with a large variety of methodologies and applied to a wide range of scenarios. Reservoir computing (RC) provides efficient tools to generate a vectorial, fixed-size representation of the MTS that can be further processed by standard classifiers. Despite their unrivaled training speed, MTS classifiers based on a standard RC architecture fail to achieve the same accuracy of fully trainable neural networks. In this article, we introduce the reservoir model space, an unsupervised approach based on RC to learn vectorial representations of MTS. Each MTS is encoded within the parameters of a linear model trained to predict a low-dimensional embedding of the reservoir dynamics. Compared with other RC methods, our model space yields better representations and attains comparable computational performance due to an intermediate dimensionality reduction procedure. As a second contribution, we propose a modular RC framework for MTS classification, with an associated open-source Python library. The framework provides different modules to seamlessly implement advanced RC architectures. The architectures are compared with other MTS classifiers, including deep learning models and time series kernels. Results obtained on the benchmark and real-world MTS data sets show that RC classifiers are dramatically faster and, when implemented using our proposed representation, also achieve superior classification accuracy.

10.
IEEE Trans Neural Netw Learn Syst ; 32(1): 435-442, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32071010

ABSTRACT

A novel functional estimator for Rényi's α -entropy and its multivariate extension was recently proposed in terms of the normalized eigenspectrum of a Hermitian matrix of the projected data in a reproducing kernel Hilbert space (RKHS). However, the utility and possible applications of these new estimators are rather new and mostly unknown to practitioners. In this brief, we first show that this estimator enables straightforward measurement of information flow in realistic convolutional neural networks (CNNs) without any approximation. Then, we introduce the partial information decomposition (PID) framework and develop three quantities to analyze the synergy and redundancy in convolutional layer representations. Our results validate two fundamental data processing inequalities and reveal more inner properties concerning CNN training.

11.
IEEE J Biomed Health Inform ; 25(7): 2435-2444, 2021 07.
Article in English | MEDLINE | ID: mdl-33284756

ABSTRACT

Deep learning-based support systems have demonstrated encouraging results in numerous clinical applications involving the processing of time series data. While such systems often are very accurate, they have no inherent mechanism for explaining what influenced the predictions, which is critical for clinical tasks. However, existing explainability techniques lack an important component for trustworthy and reliable decision support, namely a notion of uncertainty. In this paper, we address this lack of uncertainty by proposing a deep ensemble approach where a collection of DNNs are trained independently. A measure of uncertainty in the relevance scores is computed by taking the standard deviation across the relevance scores produced by each model in the ensemble, which in turn is used to make the explanations more reliable. The class activation mapping method is used to assign a relevance score for each time step in the time series. Results demonstrate that the proposed ensemble is more accurate in locating relevant time steps and is more consistent across random initializations, thus making the model more trustworthy. The proposed methodology paves the way for constructing trustworthy and dependable support systems for processing clinical time series for healthcare related tasks.


Subject(s)
Delivery of Health Care , Humans , Uncertainty
12.
Biomed Phys Eng Express ; 6(1): 015020, 2020 01 13.
Article in English | MEDLINE | ID: mdl-33438608

ABSTRACT

Tracer kinetic modelling, based on dynamic 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) is used to quantify glucose metabolism in humans and animals. Knowledge of the arterial input-function (AIF) is required for such measurements. Our aim was to explore two non-invasive machine learning-based models, for AIF prediction in a small-animal dynamic FDG PET study. 7 tissue regions were delineated in images from 68 FDG PET/computed tomography mouse scans. Two machine learning-based models were trained for AIF prediction, based on Gaussian processes (GP) and a long short-term memory (LSTM) recurrent neural network, respectively. Because blood data were unavailable, a reference AIF was formed by fitting an established AIF model to vena cava and left ventricle image data. The predicted and reference AIFs were compared by the area under curve (AUC) and root mean square error (RMSE). Net-influx rate constants, K i , were calculated with a two-tissue compartment model, using both predicted and reference AIFs for three tissue regions in each mouse scan, and compared by means of error, ratio, correlation coefficient, P value and Bland-Altman analysis. The impact of different tissue regions on AIF prediction was evaluated by training a GP and an LSTM model on subsets of tissue regions, and calculating the RMSE between the reference and the predicted AIF curve. Both models generated AIFs with AUCs similar to reference. The LSTM models resulted in lower AIF RMSE, compared to GP. K i from both models agreed well with reference values, with no significant differences. Myocardium was highlighted as important for AIF prediction, but AIFs with similar RMSE were obtained also without myocardium in the input data. Machine learning can be used for accurate and non-invasive prediction of an image-derived reference AIF in FDG studies of mice. We recommend the LSTM approach, as this model predicts AIFs with lower errors, compared to GP.


Subject(s)
Algorithms , Arteries/diagnostic imaging , Computer Simulation , Fluorodeoxyglucose F18/analysis , Image Interpretation, Computer-Assisted/methods , Machine Learning , Positron-Emission Tomography/methods , Animals , Female , Mice , Mice, Inbred BALB C , Radiopharmaceuticals/analysis
13.
IEEE Trans Pattern Anal Mach Intell ; 42(11): 2960-2966, 2020 Nov.
Article in English | MEDLINE | ID: mdl-31395536

ABSTRACT

The matrix-based Rényi's α-order entropy functional was recently introduced using the normalized eigenspectrum of a Hermitian matrix of the projected data in a reproducing kernel Hilbert space (RKHS). However, the current theory in the matrix-based Rényi's α-order entropy functional only defines the entropy of a single variable or mutual information between two random variables. In information theory and machine learning communities, one is also frequently interested in multivariate information quantities, such as the multivariate joint entropy and different interactive quantities among multiple variables. In this paper, we first define the matrix-based Rényi's α-order joint entropy among multiple variables. We then show how this definition can ease the estimation of various information quantities that measure the interactions among multiple variables, such as interactive information and total correlation. We finally present an application to feature selection to show how our definition provides a simple yet powerful way to estimate a widely-acknowledged intractable quantity from data. A real example on hyperspectral image (HSI) band selection is also provided.

14.
Med Image Anal ; 60: 101619, 2020 02.
Article in English | MEDLINE | ID: mdl-31810005

ABSTRACT

Colorectal polyps are known to be potential precursors to colorectal cancer, which is one of the leading causes of cancer-related deaths on a global scale. Early detection and prevention of colorectal cancer is primarily enabled through manual screenings, where the intestines of a patient is visually examined. Such a procedure can be challenging and exhausting for the person performing the screening. This has resulted in numerous studies on designing automatic systems aimed at supporting physicians during the examination. Recently, such automatic systems have seen a significant improvement as a result of an increasing amount of publicly available colorectal imagery and advances in deep learning research for object image recognition. Specifically, decision support systems based on Convolutional Neural Networks (CNNs) have demonstrated state-of-the-art performance on both detection and segmentation of colorectal polyps. However, CNN-based models need to not only be precise in order to be helpful in a medical context. In addition, interpretability and uncertainty in predictions must be well understood. In this paper, we develop and evaluate recent advances in uncertainty estimation and model interpretability in the context of semantic segmentation of polyps from colonoscopy images. Furthermore, we propose a novel method for estimating the uncertainty associated with important features in the input and demonstrate how interpretability and uncertainty can be modeled in DSSs for semantic segmentation of colorectal polyps. Results indicate that deep models are utilizing the shape and edge information of polyps to make their prediction. Moreover, inaccurate predictions show a higher degree of uncertainty compared to precise predictions.


Subject(s)
Colonic Polyps/diagnostic imaging , Colonoscopy , Image Interpretation, Computer-Assisted/methods , Neural Networks, Computer , Decision Support Techniques , Deep Learning , Humans , Monte Carlo Method , Semantics , Uncertainty
15.
Comput Math Methods Med ; 2019: 2059851, 2019.
Article in English | MEDLINE | ID: mdl-30915154

ABSTRACT

This study describes a novel approach to solve the surgical site infection (SSI) classification problem. Feature engineering has traditionally been one of the most important steps in solving complex classification problems, especially in cases with temporal data. The described novel approach is based on abstraction of temporal data recorded in three temporal windows. Maximum likelihood L1-norm (lasso) regularization was used in penalized logistic regression to predict the onset of surgical site infection occurrence based on available patient blood testing results up to the day of surgery. Prior knowledge of predictors (blood tests) was integrated in the modelling by introduction of penalty factors depending on blood test prices and an early stopping parameter limiting the maximum number of selected features used in predictive modelling. Finally, solutions resulting in higher interpretability and cost-effectiveness were demonstrated. Using repeated holdout cross-validation, the baseline C-reactive protein (CRP) classifier achieved a mean AUC of 0.801, whereas our best full lasso model achieved a mean AUC of 0.956. Best model testing results were achieved for full lasso model with maximum number of features limited at 20 features with an AUC of 0.967. Presented models showed the potential to not only support domain experts in their decision making but could also prove invaluable for improvement in prediction of SSI occurrence, which may even help setting new guidelines in the field of preoperative SSI prevention and surveillance.


Subject(s)
C-Reactive Protein/analysis , Cost-Benefit Analysis , Medical Informatics/methods , Surgical Wound Infection/diagnosis , Surgical Wound Infection/economics , Algorithms , Area Under Curve , Data Interpretation, Statistical , Decision Trees , Female , Gastrointestinal Tract/surgery , Humans , Likelihood Functions , Logistic Models , Male , Norway , Preoperative Period , Regression Analysis , Reproducibility of Results , Risk Factors , Time Factors
16.
Neural Netw ; 113: 91-101, 2019 May.
Article in English | MEDLINE | ID: mdl-30798048

ABSTRACT

A promising direction in deep learning research consists in learning representations and simultaneously discovering cluster structure in unlabeled data by optimizing a discriminative loss function. As opposed to supervised deep learning, this line of research is in its infancy, and how to design and optimize suitable loss functions to train deep neural networks for clustering is still an open question. Our contribution to this emerging field is a new deep clustering network that leverages the discriminative power of information-theoretic divergence measures, which have been shown to be effective in traditional clustering. We propose a novel loss function that incorporates geometric regularization constraints, thus avoiding degenerate structures of the resulting clustering partition. Experiments on synthetic benchmarks and real datasets show that the proposed network achieves competitive performance with respect to other state-of-the-art methods, scales well to large datasets, and does not require pre-training steps.


Subject(s)
Deep Learning/trends , Neural Networks, Computer , Pattern Recognition, Automated/trends , Cluster Analysis , Discriminant Analysis , Pattern Recognition, Automated/methods
17.
Comput Methods Programs Biomed ; 152: 105-114, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29054250

ABSTRACT

OBJECTIVES: Postoperative delirium is a common complication after major surgery among the elderly. Despite its potentially serious consequences, the complication often goes undetected and undiagnosed. In order to provide diagnosis support one could potentially exploit the information hidden in free text documents from electronic health records using data-driven clinical decision support tools. However, these tools depend on labeled training data and can be both time consuming and expensive to create. METHODS: The recent learning with anchors framework resolves this problem by transforming key observations (anchors) into labels. This is a promising framework, but it is heavily reliant on clinicians knowledge for specifying good anchor choices in order to perform well. In this paper we propose a novel method for specifying anchors from free text documents, following an exploratory data analysis approach based on clustering and data visualization techniques. We investigate the use of the new framework as a way to detect postoperative delirium. RESULTS: By applying the proposed method to medical data gathered from a Norwegian university hospital, we increase the area under the precision-recall curve from 0.51 to 0.96 compared to baselines. CONCLUSIONS: The proposed approach can be used as a framework for clinical decision support for postoperative delirium.


Subject(s)
Delirium/diagnosis , Electronic Health Records , Postoperative Complications , Aged , Decision Support Systems, Clinical , Delirium/complications , Humans , Norway
18.
Sci Rep ; 7: 44037, 2017 03 10.
Article in English | MEDLINE | ID: mdl-28281563

ABSTRACT

A recurrent neural network (RNN) is a universal approximator of dynamical systems, whose performance often depends on sensitive hyperparameters. Tuning them properly may be difficult and, typically, based on a trial-and-error approach. In this work, we adopt a graph-based framework to interpret and characterize internal dynamics of a class of RNNs called echo state networks (ESNs). We design principled unsupervised methods to derive hyperparameters configurations yielding maximal ESN performance, expressed in terms of prediction error and memory capacity. In particular, we propose to model time series generated by each neuron activations with a horizontal visibility graph, whose topological properties have been shown to be related to the underlying system dynamics. Successively, horizontal visibility graphs associated with all neurons become layers of a larger structure called a multiplex. We show that topological properties of such a multiplex reflect important features of ESN dynamics that can be used to guide the tuning of its hyperparamers. Results obtained on several benchmarks and a real-world dataset of telephone call data records show the effectiveness of the proposed methods.


Subject(s)
Neural Networks, Computer , Systems Analysis , Unsupervised Machine Learning
19.
IEEE Trans Neural Netw Learn Syst ; 28(6): 1466-1472, 2017 06.
Article in English | MEDLINE | ID: mdl-26930695

ABSTRACT

This brief addresses two main issues of the standard kernel entropy component analysis (KECA) algorithm: the optimization of the kernel decomposition and the optimization of the Gaussian kernel parameter. KECA roughly reduces to a sorting of the importance of kernel eigenvectors by entropy instead of variance, as in the kernel principal components analysis. In this brief, we propose an extension of the KECA method, named optimized KECA (OKECA), that directly extracts the optimal features retaining most of the data entropy by means of compacting the information in very few features (often in just one or two). The proposed method produces features which have higher expressive power. In particular, it is based on the independent component analysis framework, and introduces an extra rotation to the eigen decomposition, which is optimized via gradient-ascent search. This maximum entropy preservation suggests that OKECA features are more efficient than KECA features for density estimation. In addition, a critical issue in both the methods is the selection of the kernel parameter, since it critically affects the resulting performance. Here, we analyze the most common kernel length-scale selection criteria. The results of both the methods are illustrated in different synthetic and real problems. Results show that OKECA returns projections with more expressive power than KECA, the most successful rule for estimating the kernel parameter is based on maximum likelihood, and OKECA is more robust to the selection of the length-scale parameter in kernel density estimation.

20.
J Biomed Inform ; 61: 87-96, 2016 06.
Article in English | MEDLINE | ID: mdl-26980235

ABSTRACT

OBJECTIVE: In this work, we have developed a learning system capable of exploiting information conveyed by longitudinal Electronic Health Records (EHRs) for the prediction of a common postoperative complication, Anastomosis Leakage (AL), in a data-driven way and by fusing temporal population data from different and heterogeneous sources in the EHRs. MATERIAL AND METHODS: We used linear and non-linear kernel methods individually for each data source, and leveraging the powerful multiple kernels for their effective combination. To validate the system, we used data from the EHR of the gastrointestinal department at a university hospital. RESULTS: We first investigated the early prediction performance from each data source separately, by computing Area Under the Curve values for processed free text (0.83), blood tests (0.74), and vital signs (0.65), respectively. When exploiting the heterogeneous data sources combined using the composite kernel framework, the prediction capabilities increased considerably (0.92). Finally, posterior probabilities were evaluated for risk assessment of patients as an aid for clinicians to raise alertness at an early stage, in order to act promptly for avoiding AL complications. DISCUSSION: Machine-learning statistical model from EHR data can be useful to predict surgical complications. The combination of EHR extracted free text, blood samples values, and patient vital signs, improves the model performance. These results can be used as a framework for preoperative clinical decision support.


Subject(s)
Digestive System Surgical Procedures , Electronic Health Records , Postoperative Complications , Anastomotic Leak , Colon/surgery , Humans , Models, Statistical , Rectum/surgery , Risk Assessment , Support Vector Machine
SELECTION OF CITATIONS
SEARCH DETAIL
...