Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 4352, 2022 07 27.
Article in English | MEDLINE | ID: mdl-35896539

ABSTRACT

Obesity is a pre-disposing condition for chronic obstructive pulmonary disease, asthma, and pulmonary arterial hypertension. Accumulating evidence suggests that metabolic influences during development can determine chronic lung diseases (CLD). We demonstrate that maternal obesity causes early metabolic disorder in the offspring. Here, interleukin-6 induced bronchial and microvascular smooth muscle cell (SMC) hyperproliferation and increased airway and pulmonary vascular resistance. The key anti-proliferative transcription factor FoxO1 was inactivated via nuclear exclusion. These findings were confirmed using primary SMC treated with interleukin-6 and pharmacological FoxO1 inhibition as well as genetic FoxO1 ablation and constitutive activation. In vivo, we reproduced the structural and functional alterations in offspring of obese dams via the SMC-specific ablation of FoxO1. The reconstitution of FoxO1 using IL-6-deficient mice and pharmacological treatment did not protect against metabolic disorder but prevented SMC hyperproliferation. In human observational studies, childhood obesity was associated with reduced forced expiratory volume in 1 s/forced vital capacity ratio Z-score (used as proxy for lung function) and asthma. We conclude that the interleukin-6-FoxO1 pathway in SMC is a molecular mechanism by which perinatal obesity programs the bronchial and vascular structure and function, thereby driving CLD development. Thus, FoxO1 reconstitution provides a potential therapeutic option for preventing this metabolic programming of CLD.


Subject(s)
Asthma , Hypertension, Pulmonary , Pediatric Obesity , Animals , Asthma/metabolism , Child , Female , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Humans , Hypertension, Pulmonary/genetics , Interleukin-6/metabolism , Mice , Myocytes, Smooth Muscle/metabolism , Pediatric Obesity/complications , Pediatric Obesity/metabolism , Pregnancy
2.
J Mol Med (Berl) ; 98(2): 279-289, 2020 02.
Article in English | MEDLINE | ID: mdl-31912169

ABSTRACT

Intrauterine growth restriction (IUGR) and low birth weight are risk factors for childhood asthma. Atopic march describes the progression from early dermatitis to asthma during life. Since inflammatory signaling is linked to increased airway resistance and lung remodeling in rats after IUGR, we queried if these findings are related to skin inflammatory response. Firstly, we induced IUGR in Wistar rats by isocaloric protein restriction during gestation. IUGR rats showed lower body weight at postnatal day 1 (P1), catch-up growth at P21, and similar body weight like controls at P90. At P1 and P90, mRNA of inflammatory as well as fibrotic markers and number of skin immune cells (macrophages) were increased after IUGR. Skin thymic stromal lymphopoietin (TSLP) mRNA at P1 and serum TSLP at P1 and P21 were elevated in IUGR. Moreover, IUGR impaired transepidermal water loss at P21 and P90. IUGR induced higher. Secondly, the increase of TEWL after Oxazolone treatment as a model of atopic dermatitis (AD) was greater in IUGR than in Co. Our data demonstrate an early inflammatory skin response, which is linked to persistent macrophage infiltration in the skin and impaired epidermal barrier function after IUGR. These findings coupled with elevated TSLP could underlie atopic diseases in rats after IUGR. KEY MESSAGES: • The present study shows that IUGR increases macrophage infiltration and induces an inflammatory and fibrotic gene expression pattern in the skin of newborn rats. • Early postnatal inflammatory response in the skin after IUGR is followed by impaired epidermal barrier function later in life. • IUGR aggravates transepidermal water loss in an experimental atopic dermatitis model, possibly through elevated TSLP in skin and serum. • Early anti-inflammatory treatment and targeting TSLP signaling could offer novel avenues for early prevention of atopic disorders and late asthma in high-risk infants.


Subject(s)
Cytokines , Dermatitis, Atopic , Fetal Growth Retardation , Animals , Animals, Newborn , Cytokines/blood , Cytokines/genetics , Cytokines/metabolism , Dermatitis, Atopic/blood , Dermatitis, Atopic/immunology , Dermatitis, Atopic/metabolism , Disease Models, Animal , Female , Macrophages/immunology , Rats, Wistar , Skin/immunology , Skin/metabolism , Thymic Stromal Lymphopoietin
SELECTION OF CITATIONS
SEARCH DETAIL
...