Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Main subject
Publication year range
1.
J Am Chem Soc ; 146(20): 13949-13961, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38739624

ABSTRACT

Aqueous-phase electrocatalytic hydrogenation of benzaldehyde on Cu leads not only to benzyl alcohol (the carbonyl hydrogenation product), but Cu also catalyzes carbon-carbon coupling to hydrobenzoin. In the absence of an organic substrate, H2 evolution proceeds via the Volmer-Tafel mechanism on Cu/C, with the Tafel step being rate-determining. In the presence of benzaldehyde, the catalyst surface is primarily covered with the organic substrate, while H* coverage is low. Mechanistically, the first H addition to the carbonyl O of an adsorbed benzaldehyde molecule leads to a surface-bound hydroxy intermediate. The hydroxy intermediate then undergoes a second and rate-determining H addition to its α-C to form benzyl alcohol. The H additions occur predominantly via the proton-coupled electron transfer mechanism. In a parallel reaction, the radical α-C of the hydroxy intermediate attacks the electrophilic carbonyl C of a physisorbed benzaldehyde molecule to form the C-C bond, which is rate-determining. The C-C coupling is accompanied by the protonation of the formed alkoxy radical intermediate, coupled with electron transfer from the surface of Cu, to form hydrobenzoin.

2.
Inorg Chem ; 63(1): 129-140, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38109782

ABSTRACT

Three new coordination polymers (CPs) constructed from the linker 1,4-di(dithiocarboxylate) (BDDTC2-)─the sulfur-analog of 1,4-benzenedicarboxylate (BDC2-)─together with Mn-, Zn-, and Fe-based inorganic SBUs are reported with description of their structural and electronic properties. Single-crystal X-ray diffraction revealed structural diversity ranging from one-dimensional chains in [Mn(BDDTC)(DMF)2] (1) to two-dimensional (2D) honeycomb sheets observed for [Zn2(BDDTC)3][Zn(DMF)5(H2O)] (2). Gas adsorption experiments confirmed a 3D porous structure for the mixed-valent material [Fe2(BDDTC)2(OH)] (3). 3 contains a 1:1 ratio of Fe2+/3+ ions, as evidenced by 57Fe Mössbauer, X-band EPR, and X-ray absorption spectroscopy. Its empirical formula was established by elemental analysis, thermal gravimetric analysis, infrared vibrational spectroscopy, and X-ray absorption spectroscopy in lieu of elusive single-crystal X-ray diffraction data. In contrast to the Mn- and Zn-based compounds 1 and 2, the Fe2+/3+ CP 3 showed remarkably high electrical conductivity of 5 × 10-3 S cm-1 (according to van der Pauw measurements), which is within the range of semiconducting materials. Overall, our study confirms that sulfur derivatives of typical carboxylate linkers (e.g., BDC) are suitable for the construction of electrically conducting CPs, due to acceptedly higher covalency in metal-ligand bonding compared to the electrically insulating carboxylate CPs or metal-organic frameworks. At the same time, the direct comparison between insulating CPs 1 and 2 with CP 3 emphasizes that the electronic structure of the metal is likewise a crucial aspect to construct electrically conductive materials.

3.
J Am Chem Soc ; 145(32): 17710-17719, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37545395

ABSTRACT

The stoichiometric conversion of methane to methanol by Cu-exchanged zeolites can be brought to highest yields by the presence of extraframework Al and high CH4 chemical potentials. Combining theory and experiments, the differences in chemical reactivity of monometallic Cu-oxo and bimetallic Cu-Al-oxo nanoclusters stabilized in zeolite mordenite (MOR) are investigated. Cu-L3 edge X-ray absorption near-edge structure (XANES), infrared (IR), and ultraviolet-visible (UV-vis) spectroscopies, in combination with CH4 oxidation activity tests, support the presence of two types of active clusters in MOR and allow quantification of the relative proportions of each type in dependence of the Cu concentration. Ab initio molecular dynamics (MD) calculations and thermodynamic analyses indicate that the superior performance of materials enriched in Cu-Al-oxo clusters is related to the activity of two µ-oxo bridges in the cluster. Replacing H2O with ethanol in the product extraction step led to the formation of ethyl methyl ether, expanding this way the applicability of these materials for the activation and functionalization of CH4. We show that competition between different ion-exchanged metal-oxo structures during the synthesis of Cu-exchanged zeolites determines the formation of active species, and this provides guidelines for the synthesis of highly active materials for CH4 activation and functionalization.

4.
Nat Commun ; 13(1): 7967, 2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36575187

ABSTRACT

The open circuit potential (OCP) established by the quasi-equilibrated electrode reaction of H2 and H3O+(hydr.), complicates catalytic reactions significantly. The hydrogenolysis rate of benzylic alcohol on Pd/C increases 2-3 orders of magnitude with the pH decreasing from 7 to 0.6. The reaction follows a pathway of protonated benzyl alcohol dehydration to a benzylic carbenium ion, followed by a hydride addition to form toluene. The dehydration of protonated benzyl alcohol is kinetic relevent, thus, being enhanced at lower pH. The OCP stabilizes all cationic species in the elementary steps. Particularly, the initial state (benzyl alcohol oxonium ion) is less stabilized than the dehydration transition state and the product (benzylic carbenium), thus, lowering the free energy barrier of the rate-determining step. In accordance, the rate increased with increasingly negative OCP. Beside OCP, an external negative electric potential in an electrocatlaytic system was also demonstrated to enhance the rate in the same way.

5.
JACS Au ; 2(3): 613-622, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35373212

ABSTRACT

NaY zeolite-encapsulated dimeric (Mo2S4) and tetrameric (Mo4S4) molybdenum sulfide clusters stabilize hydrogen as hydride binding to Mo atoms. Density functional theory (DFT) calculations and adsorption measurements suggest that stabilization of hydrogen as sulfhydryl (SH) groups, as typical for layered MoS2, is thermodynamically disfavored. Competitive adsorption of H2 and ethene on Mo was probed by quantifying adsorbed CO on partly hydrogen and/or ethene covered samples with IR spectroscopy. During hydrogenation, experiment and theory suggest that Mo is covered predominately with ethene and sparsely with hydride. DFT calculations further predict that, under reaction conditions, each Mo x S y cluster can activate only one H2, suggesting that the entire cluster (irrespective of its nuclearity) acts as one active site for hydrogenation. The nearly identical turnover frequencies (24.7 ± 3.3 molethane·h-1·molcluster -1), apparent activation energies (31-32 kJ·mol-1), and reaction orders (∼0.5 in ethene and ∼1.0 in H2) show that the active sites in both clusters are catalytically indistinguishable.

6.
JACS Au ; 1(9): 1412-1421, 2021 Sep 27.
Article in English | MEDLINE | ID: mdl-34604851

ABSTRACT

Cu-zeolites are able to directly convert methane to methanol via a three-step process using O2 as oxidant. Among the different zeolite topologies, Cu-exchanged mordenite (MOR) shows the highest methanol yields, attributed to a preferential formation of active Cu-oxo species in its 8-MR pores. The presence of extra-framework or partially detached Al species entrained in the micropores of MOR leads to the formation of nearly homotopic redox active Cu-Al-oxo nanoclusters with the ability to activate CH4. Studies of the activity of these sites together with characterization by 27Al NMR and IR spectroscopy leads to the conclusion that the active species are located in the 8-MR side pockets of MOR, and it consists of two Cu ions and one Al linked by O. This Cu-Al-oxo cluster shows an activity per Cu in methane oxidation significantly higher than of any previously reported active Cu-oxo species. In order to determine unambiguously the structure of the active Cu-Al-oxo cluster, we combine experimental XANES of Cu K- and L-edges, Cu K-edge HERFD-XANES, and Cu K-edge EXAFS with TDDFT and AIMD-assisted simulations. Our results provide evidence of a [Cu2AlO3]2+ cluster exchanged on MOR Al pairs that is able to oxidize up to two methane molecules per cluster at ambient pressure.

7.
Angew Chem Int Ed Engl ; 60(17): 9301-9305, 2021 Apr 19.
Article in English | MEDLINE | ID: mdl-33576131

ABSTRACT

Supercages of faujasite (FAU)-type zeolites serve as a robust scaffold for stabilizing dinuclear (Mo2 S4 ) and tetranuclear (Mo4 S4 ) molybdenum sulfide clusters. The FAU-encaged Mo4 S4 clusters have a distorted cubane structure similar to the FeMo-cofactor in nitrogenase. Both clusters possess unpaired electrons on Mo atoms. Additionally, they show identical catalytic activity per sulfide cluster. Their catalytic activity is stable (>150 h) for ethene hydrogenation, while layered MoS2 structures deactivate significantly under the same reaction conditions.

8.
Nanoscale ; 12(29): 15800-15813, 2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32691790

ABSTRACT

Thermal decomposition of metal-organic framework (MOF) precursors is a recent method to create well-dispersed metal centers within active catalyst materials with enhanced stability, as required for dynamic operation conditions in light of challenges caused by the renewable energy supply. Here, we use a hard X-ray-based toolbox of pair distribution function (PDF) and X-ray absorption spectroscopy (XAS) analysis combined with X-ray diffraction and catalytic activity tests to investigate structure-activity correlations of methanation catalysts obtained by thermal decomposition of a Ni(BDC)(PNO) MOF precursor. Increasing the decomposition temperature from 350 to 500 °C resulted in Nifcc nanoparticles with increasing particle sizes, alongside a decrease in Ni2+ species and strain-induced peak broadening. For lower temperatures and inert atmosphere, Ni3C and NiO phases co-existed. A graphitic shell stabilized the Ni particles. Compared to an inert atmosphere, reducing conditions led to larger particles and a faster decomposition of the MOF precursor. Catalytic studies revealed that the decomposition at an intermediate temperature of 375 °C in 5% H2/He is the best set of parameters to obtain high specific surface areas while maintaining particle sizes that feature many active Ni centers for the formation of CH4.

9.
Sci Adv ; 6(19): eaax5331, 2020 May.
Article in English | MEDLINE | ID: mdl-32426483

ABSTRACT

Unsupported Ni-Mo sulfides have been hydrothermally synthesized and purified by HCl leaching to remove Ni sulfides. Unblocking of active sites by leaching significantly increases the catalytic activity for dibenzothiophene hydrodesulfurization. The site-specific rates of both direct (hydrogenolytic) and hydrogenative desulfurization routes on these active sites that consist of coordinatively unsaturated Ni and sulfhydryl groups were identical for all unsupported sulfides. The hydrogenative desulfurization rates were more than an order of magnitude higher on unsupported Ni-Mo sulfides than on Al2O3-supported catalysts, while they were similar for the direct (hydrogenolytic) desulfurization. The higher activity is concluded to be caused by the lower average electronegativity, i.e., higher base strength and polarity, of Ni-Mo sulfides in the absence of the alumina support and the modified adsorption of reactants enabled by multilayer stacking. Beyond the specific catalytic reaction, the synthesis strategy points to promising scalable routes to sulfide materials broadly applied in hydrogenation and hydrotreating.

10.
Phys Chem Chem Phys ; 22(34): 18891-18901, 2020 Sep 08.
Article in English | MEDLINE | ID: mdl-32350496

ABSTRACT

Photochemical and electrochemical reactions are highly relevant processes for (i) transforming chemicals (e.g. photoreduction of isopropanol to acetone, electrochemical hydrogenation of benzaldehyde to benzyl alcohol, etc.), and (ii) sustainable energy production (e.g. photoreduction of CO2 to methanol, electrocatalytic H2 evolution reaction). It is therefore of importance to monitor the structural changes and to understand the properties of active sites under photocatalytic and electrocatalytic reaction conditions. Operando X-ray absorption spectroscopy (XAS) provides the means to investigate the nature of active sites under realistic reaction conditions. In this contribution, we describe the successful development of photochemical and electrochemical cells for operando XAS measurements during photocatalytic and electrocatalytic reactions. We have used the operando photochemical cell to monitor the formation of Pt nanoparticles on graphitic carbon nitride nanosheets (g-C3N4-ns) via photodeposition under visible light illumination and observed the formation of highly dispersed Pt nanoparticles with an estimated size of ∼2.5 nm and >60% dispersion. We have also tested this cell to follow the oxidation state of Pt in Pt/TiO2 and Pt/g-C3N4-ns during H2 evolution reaction (HER). We observed that Pt predominantly existed as metallic (reduced) Pt0 species under HER conditions, and that PtOx species were partially reduced from PtIV to Pt0 upon illumination with UV or visible light. The rates of H2 evolution obtained in the photochemical cell (12.1 mmol g-1 h-1 on Pt/TiO2 and 1.01 mmol g-1 h-1 on Pt/g-C3N4-ns) were comparable to that obtained in a standard top-irradiated photoreactor (16.6 mmol g-1 h-1 on Pt/TiO2 and 1.76 mmol g-1 h-1 on Pt/g-C3N4-ns). The operando electrochemical cell was successfully tested to monitor the changes in the structure and oxidation state of Pd in Pd/C electrocatalyst during electrocatalytic hydrogenation (ECH) of benzaldehyde. It was demonstrated that Pd in Pd/C was present in a partially reduced state (∼80% Pd0 and ∼20% PdII) and Pd nanoparticles did not degrade upon the application of an external potential under ECH reaction conditions.

11.
Chemistry ; 26(34): 7515, 2020 Jun 18.
Article in English | MEDLINE | ID: mdl-32452593

ABSTRACT

Invited for the cover of this issue is the collaborative team of researchers from TU Munich, PNNL and TU Delft. Read the full text of the article at 10.1002/chem.202000772.

12.
Chemistry ; 26(34): 7563-7567, 2020 Jun 18.
Article in English | MEDLINE | ID: mdl-32092206

ABSTRACT

Copper-oxo clusters exchanged in zeolite mordenite are active in the stoichiometric conversion of methane to methanol at low temperatures. Here, we show an unprecedented methanol yield per Cu of 0.6, with a 90-95 % selectivity, on a MOR solely containing [Cu3 (µ-O)3 ]2+ active sites. DFT calculations, spectroscopic characterization and kinetic analysis show that increasing the chemical potential of methane enables the utilization of two µ-oxo bridge oxygen out of the three available in the tricopper-oxo cluster structure. Methanol and methoxy groups are stabilized in parallel, leading to methanol desorption in the presence of water.

13.
J Am Chem Soc ; 140(14): 4849-4859, 2018 04 11.
Article in English | MEDLINE | ID: mdl-29488757

ABSTRACT

The active sites for propane dehydrogenation in Ga/H-ZSM-5 with moderate concentrations of tetrahedral aluminum in the lattice were identified to be Lewis-Brønsted acid pairs. With increasing availability, Ga+ and Brønsted acid site concentrations changed inversely, as protons of Brønsted acid sites were exchanged with Ga+. At a Ga/Al ratio of 1/2, the rate of propane dehydrogenation was 2 orders of magnitude higher than with the parent H-ZSM-5, highlighting the extraordinary activity of the Lewis-Brønsted acid pairs. Density functional theory calculations relate the high activity to a bifunctional mechanism that proceeds via heterolytic activation of the propane C-H bond followed by a monomolecular elimination of H2 and desorption of propene.

14.
J Phys Chem B ; 120(8): 1988-95, 2016 Mar 03.
Article in English | MEDLINE | ID: mdl-26700549

ABSTRACT

The mechanism of CO2 adsorption on primary, secondary, and bibasic aminosilanes synthetically functionalized in porous SiO2 was qualitatively and quantitatively investigated by a combination of IR spectroscopy, thermogravimetry, and quantum mechanical modeling. The mode of CO2 adsorption depends particularly on the nature of the amine group and the spacing between the aminosilanes. Primary amines bonded CO2 preferentially through the formation of intermolecular ammonium carbamates, whereas CO2 was predominantly stabilized as carbamic acid, when interacting with secondary amines. Ammonium carbamate formation requires the transfer of the carbamic acid proton to a second primary amine group to form the ammonium ion and hence two (primary) amine groups are required to bind one CO2 molecule. The higher base strength of secondary amines enables the stabilization of carbamic acid, which is thereby hindered to interact further with nearby amine functions, because their association with Si-OH groups (either protonation or hydrogen bonding) does not allow further stabilization of carbamic acid as carbamate. Steric hindrance of the formation of intermolecular ammonium carbamates leads to higher uptake capacities for secondary amines functionalized in porous SiO2 at higher amine densities. In aminosilanes possessing a primary and a secondary amine group, the secondary amine group tends to be protonated by Si-OH groups and therefore does not substantially interact with CO2.

15.
Nat Commun ; 6: 7546, 2015 Jun 25.
Article in English | MEDLINE | ID: mdl-26109507

ABSTRACT

Copper-exchanged zeolites with mordenite structure mimic the nuclearity and reactivity of active sites in particulate methane monooxygenase, which are enzymes able to selectively oxidize methane to methanol. Here we show that the mordenite micropores provide a perfect confined environment for the highly selective stabilization of trinuclear copper-oxo clusters that exhibit a high reactivity towards activation of carbon-hydrogen bonds in methane and its subsequent transformation to methanol. The similarity with the enzymatic systems is also implied from the similarity of the reversible rearrangements of the trinuclear clusters occurring during the selective transformations of methane along the reaction path towards methanol, in both the enzyme system and copper-exchanged mordenite.

16.
Chem Commun (Camb) ; 49(90): 10584-6, 2013 Nov 21.
Article in English | MEDLINE | ID: mdl-24092414

ABSTRACT

An increase in p-xylene selectivity was observed without losing the catalytic activity over novel mesoporous nano-sized ZSM5 crystals covered with an external SiO2 overlayer created by deposition of tetraethyl orthosilicate.

17.
J Am Chem Soc ; 134(30): 12528-35, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-22738117

ABSTRACT

Platinum nanoparticles supported on n- and p-type gallium nitride (GaN) are investigated as novel hybrid systems for the electronic control of catalytic activity via electronic interactions with the semiconductor support. In situ oxidation and reduction were studied with high pressure photoemission spectroscopy. The experiments revealed that the underlying wide-band-gap semiconductor has a large influence on the chemical composition and oxygen affinity of supported nanoparticles under X-ray irradiation. For as-deposited Pt cuboctahedra supported on n-type GaN, a higher fraction of oxidized surface atoms was observed compared to cuboctahedral particles supported on p-type GaN. Under an oxygen atmosphere, immediate oxidation was recorded for nanoparticles on n-type GaN, whereas little oxidation was observed for nanoparticles on p-type GaN. Together, these results indicate that changes in the Pt chemical state under X-ray irradiation depend on the type of GaN doping. The strong interaction between the nanoparticles and the support is consistent with charge transfer of X-ray photogenerated free carriers at the semiconductor-nanoparticle interface and suggests that GaN is a promising wide-band-gap support material for photocatalysis and electronic control of catalysis.

18.
Chemphyschem ; 12(6): 1130-4, 2011 Apr 18.
Article in English | MEDLINE | ID: mdl-21438112

ABSTRACT

The remarkable differences in the guest diffusivities in nanoporous materials commonly found with the application of different measuring techniques are usually ascribed to the existence of a hierarchy of transport resistances in addition to the diffusional resistance of the pore system and their differing influence due to the differing diffusion path lengths covered by the different measuring techniques. We report diffusion measurements with nanoporous glasses where the existence of such resistances could be avoided. Molecular propagation over diffusion path lengths from hundreds of nanometers up to millimeters was thus found to be controlled by a uniform mechanism, appearing in coinciding results of microscopic and macroscopic diffusion measurement.

19.
Chem Commun (Camb) ; 47(11): 3254-6, 2011 Mar 21.
Article in English | MEDLINE | ID: mdl-21279196

ABSTRACT

Co and Mn polysiloxanes are unique catalyst/initiator systems for the liquid phase oxidation of o-xylene showing higher activity than Co naphthenates, which is related to the weak interaction of the polar products with the hydrophobic surface as well as the absence of hydroxyl groups and surrounding oxygenates limiting radical quenching.

SELECTION OF CITATIONS
SEARCH DETAIL
...