Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 18(1): 353-358, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29768853

ABSTRACT

Ordered mesoporous Cu-Mn binary metal oxide (meso-CuMnOx) catalysts were successfully synthesized by a hard-templating method from a mesoporous silica template with a cubic Ia3d mesostructure (KIT-6) or hydrophobic KIT-6, exhibiting a well-developed crystalline framework, a regular pore size distribution and a high surface area. The copper and manganese elements in the mesoporous Cu-Mn binary metal oxides (meso-CuMnOx-N and meso-CuMnOx-HP), obtained from the KIT-6 and hydrophobic KIT-6, respectively, were homogeneously dispersed in the whole particles. The activities of meso-CuMnOx catalysts for the decomposition of a liquid monopropellant containing an energetic ionic liquid, ammonium dinitramide, were much higher than that over a CuMnOx catalyst prepared by a conventional precipitation method. This is attributed to the well-developed mesoporosity of the meso-CuMnOx catalysts. Among the mesoporous CuMnOx catalysts, the decomposition onset temperature over meso-CuMnOx-HP (87.9 °C) was found to be lower than that over meso-CuMnOx-N (100.4 °C), probably due to its higher mesoporosity and surface area.

2.
J Nanosci Nanotechnol ; 18(2): 1427-1430, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29448605

ABSTRACT

Mesoporous CuCe-based ternary metal oxides were synthesized using KIT-6 as a hard template through a nano-casting method. The mesoporous CuCe-based metal oxides were applied to the catalytic decomposition of the ammonium dinitramide-based liquid monopropellant. The decomposition onset temperature over the meso-CuCe ternary metal oxides was much lower than that over the CuCeOx catalyst prepared by conventional precipitation method. Higher activity of the meso-CuCe ternary metal oxides is attributed to higher surface area and larger pore size of the meso-CuCe ternary metal oxides than those of the conventional CuCe oxide. The highest activity of meso-CuCeZr catalyst among the meso-CuCe ternary metal oxide catalysts is likely due to the highest mesoporosity.

SELECTION OF CITATIONS
SEARCH DETAIL
...