Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7: 40202, 2017 01 05.
Article in English | MEDLINE | ID: mdl-28054656

ABSTRACT

CNTs need to be dispersed in aqueous solution for their successful use, and most methods to disperse CNTs rely on tedious and time-consuming acid-based oxidation. Here, we report the simple dispersion of intact multi-walled carbon nanotubes (CNTs) by adding them directly into an aqueous solution of glucose oxidase (GOx), resulting in simultaneous CNT dispersion and facile enzyme immobilization through sequential enzyme adsorption, precipitation, and crosslinking (EAPC). The EAPC achieved high enzyme loading and stability because of crosslinked enzyme coatings on intact CNTs, while obviating the chemical pretreatment that can seriously damage the electron conductivity of CNTs. EAPC-driven GOx activity was 4.5- and 11-times higher than those of covalently-attached GOx (CA) on acid-treated CNTs and simply-adsorbed GOx (ADS) on intact CNTs, respectively. EAPC showed no decrease of GOx activity for 270 days. EAPC was employed to prepare the enzyme anodes for biofuel cells, and the EAPC anode produced 7.5-times higher power output than the CA anode. Even with a higher amount of bound non-conductive enzymes, the EAPC anode showed 1.7-fold higher electron transfer rate than the CA anode. The EAPC on intact CNTs can improve enzyme loading and stability with key routes of improved electron transfer in various biosensing and bioelectronics devices.

2.
Biosens Bioelectron ; 26(2): 655-60, 2010 Oct 15.
Article in English | MEDLINE | ID: mdl-20673623

ABSTRACT

Nanoscale enzyme reactors (NERs) of glucose oxidase in conductive mesoporous carbons were prepared in a two-step process of enzyme adsorption and follow-up enzyme crosslinking. MSU-F-C, a mesoprous carbon, has a bottleneck pore structure with mesocellular pores of 26 nm connected with window mesopores of 17 nm. This structure enables the ship-in-a-bottle mechanism of NERs, which effectively prevents the crosslinked enzymes in mesocellular pores from leaching through the smaller window mesopores. This NER approach not only stabilized the enzyme but also expedited electron transfer between the enzyme and the conductive MSU-F-C by maintaining a short distance between them. In a comparative study with GOx that was simply adsorbed without crosslinking, the NER approach was proven to be effective in improving the sensitivity of glucose biosensors and the power density of biofuel cells. The power density of biofuel cells could be further improved by manipulating several factors, such as by adding a mediator, changing the order of adsorption and crosslinking, and inserting a gold mesh as an electron collector.


Subject(s)
Bioelectric Energy Sources , Bioreactors , Biosensing Techniques/instrumentation , Carbon/chemistry , Conductometry/instrumentation , Glucose Oxidase/chemistry , Nanostructures/chemistry , Enzymes, Immobilized/chemistry , Equipment Design , Equipment Failure Analysis , Nanostructures/ultrastructure , Porosity
SELECTION OF CITATIONS
SEARCH DETAIL
...