Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 18(11)2018 Oct 25.
Article in English | MEDLINE | ID: mdl-30366402

ABSTRACT

Vehicular ad hoc networks (VANETs) provide information and entertainment to drivers for safe and enjoyable driving. Wireless Access in Vehicular Environments (WAVE) is designed for VANETs to provide services efficiently. In particular, infotainment services are crucial to leverage market penetration and deployment costs of the WAVE standard. However, a low presence of infrastructure results in a shadow zone on the road and a link disconnection. The link disconnection is an obstacle to providing safety and infotainment services and becomes an obstacle to the deployment of the WAVE standard. In this paper, we propose a cooperative communication protocol to reduce performance degradation due to frequent link disconnection in the road environment. The proposed protocol provides contention-free data delivery by the coordination of roadside units (RSUs) and can provide the network QoS. The proposed protocol is shown to enhance throughput and delay through the simulation.

2.
Sensors (Basel) ; 16(7)2016 Jun 27.
Article in English | MEDLINE | ID: mdl-27355952

ABSTRACT

The IEEE 802.15.4 standard is widely recognized as one of the most successful enabling technologies for short range low rate wireless communications and it is used in IoT applications. It covers all the details related to the MAC and PHY layers of the IoT protocol stack. Due to the nature of IoT, the wireless sensor networks are autonomously self-organized networks without infrastructure support. One of the issues in IoT is the network scalability. To address this issue, it is necessary to support the multi-hop topology. The IEEE 802.15.4 network can support a star, peer-to-peer, or cluster-tree topology. One of the IEEE 802.15.4 topologies suited for the high predictability of performance guarantees and energy efficient behavior is a cluster-tree topology where sensor nodes can switch off their transceivers and go into a sleep state to save energy. However, the IEEE 802.15.4 cluster-tree topology may not be able to provide sufficient bandwidth for the increased traffic load and the additional information may not be delivered successfully. The common drawback of the existing approaches is that they do not address the poor bandwidth utilization problem in IEEE 802.15.4 cluster-tree networks, so it is difficult to increase the network performance. Therefore, to solve this problem in this paper we study a relay transmission protocol based on the standard protocol in the IEEE 802.15.4 MAC. In the proposed scheme, the coordinators can relay data frames to their parent devices or their children devices without contention and can provide bandwidth for the increased traffic load or the number of devices. We also evaluate the performance of the proposed scheme through simulation. The simulation results demonstrate that the proposed scheme can improve the reliability, the end-to-end delay, and the energy consumption.

3.
Sensors (Basel) ; 15(5): 11628-52, 2015 May 20.
Article in English | MEDLINE | ID: mdl-26007722

ABSTRACT

The Internet of things (IoT) is a novel paradigm where all things or objects in daily life can communicate with other devices and provide services over the Internet. Things or objects need identifying, sensing, networking and processing capabilities to make the IoT paradigm a reality. The IEEE 802.15.4 standard is one of the main communication protocols proposed for the IoT. The IEEE 802.15.4 standard provides the guaranteed time slot (GTS) mechanism that supports the quality of service (QoS) for the real-time data transmission. In spite of some QoS features in IEEE 802.15.4 standard, the problem of end-to-end delay still remains. In order to solve this problem, we propose a cooperative medium access scheme (MAC) protocol for real-time data transmission. We also evaluate the performance of the proposed scheme through simulation. The simulation results demonstrate that the proposed scheme can improve the network performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...