Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
FASEB J ; 36(11): e22534, 2022 11.
Article in English | MEDLINE | ID: mdl-36183361

ABSTRACT

The solute carrier 26 family member A9 (SLC26A9) is an epithelial anion transporter that is assumed to contribute to airway chloride secretion and surface hydration. Whether SLC26A9 or CFTR is responsible for airway Cl- transport under basal conditions is still unclear, due to the lack of a specific inhibitor for SLC26A9. In the present study, we report a novel potent and specific inhibitor for SLC26A9, identified by screening of a drug-like molecule library and subsequent chemical modifications. The most potent compound S9-A13 inhibited SLC26A9 with an IC50 of 90.9 ± 13.4 nM. S9-A13 did not inhibit other members of the SLC26 family and had no effects on Cl- channels such as CFTR, TMEM16A, or VRAC. S9-A13 inhibited SLC26A9 Cl- currents in cells that lack expression of CFTR. It also inhibited proton secretion by HGT-1 human gastric cells. In contrast, S9-A13 had minimal effects on ion transport in human airway epithelia and mouse trachea, despite clear expression of SLC26A9 in the apical membrane of ciliated cells. In both tissues, basal and stimulated Cl- secretion was due to CFTR, while acidification of airway surface liquid by S9-A13 suggests a role of SLC26A9 for airway bicarbonate secretion.


Subject(s)
Chlorides , Cystic Fibrosis Transmembrane Conductance Regulator , Animals , Antiporters/metabolism , Bicarbonates/metabolism , Chlorides/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Epithelial Cells/metabolism , Humans , Hydrogen-Ion Concentration , Mice , Protons , Sulfate Transporters/genetics , Sulfate Transporters/metabolism
2.
Br J Pharmacol ; 178(17): 3414-3427, 2021 09.
Article in English | MEDLINE | ID: mdl-33837955

ABSTRACT

BACKGROUND AND PURPOSE: Protease-activated receptor 1 (PAR1) is a GPCR expressed in several skin cell types, including keratinocyte and dermal fibroblast. PAR1 activation plays a crucial role in the process of skin wound healing such as thrombosis, inflammation, proliferation and tissue repair. In the present study, we identified a novel positive allosteric modulator of PAR1, GB83, and investigated its effect on skin wound healing. EXPERIMENTAL APPROACH: The enhancement of PAR1 activity by GB83 was measured using Fluo-4 calcium assay. In silico docking analysis of GB83 in PAR1 was performed using dock ligands method (CDOCKER) with CHARMm force field. Effects of GB83 on cell viability and gene expression were observed using MTS assay and quantitative real-time PCRs, respectively. SKH-1 hairless mice were used to investigate the wound healing effect of GB83. KEY RESULTS: We demonstrated that GB83 did not activate PAR1 by itself but strongly enhanced PAR1 activation by thrombin and PAR1-activating peptide (AP). In silico docking analysis revealed that GB83 can bind to the PAR1 binding site of vorapaxar. GB83 significantly promoted PAR1-mediated cell viability and migration. In addition, the enhancement of PAR1 activity by GB83 strongly increased gene expression of TGF-ß, fibronectin and type I collagen in vitro and promoted skin wound healing in vivo. CONCLUSION AND IMPLICATIONS: Our results revealed that GB83 is the first positive allosteric modulator of PAR1 and it can be a useful pharmacological tool for studying PAR1 and a potential therapeutic agent for skin wound healing.


Subject(s)
Receptor, PAR-1 , Wound Healing , Animals , Fibroblasts , Keratinocytes , Mice , Mice, Hairless , Skin
4.
PLoS One ; 12(3): e0174935, 2017.
Article in English | MEDLINE | ID: mdl-28362855

ABSTRACT

Anoctamin 1 (ANO1), a calcium-activated chloride channel, is highly amplified in prostate cancer, the most common form of cancer and leading causes of cancer death in men, and downregulation of ANO1 expression or its functional activity is known to inhibit cell proliferation, migration and invasion in prostate cancer cells. Here, we performed a cell-based screening for the identification of ANO1 inhibitors as potential anticancer therapeutic agents for prostate cancer. Screening of ~300 selected bioactive natural products revealed that luteolin is a novel potent inhibitor of ANO1. Electrophysiological studies indicated that luteolin potently inhibited ANO1 chloride channel activity in a dose-dependent manner with an IC50 value of 9.8 µM and luteolin did not alter intracellular calcium signaling in PC-3 prostate cancer cells. Luteolin inhibited cell proliferation and migration of PC-3 cells expressing high levels of ANO1 more potently than that of ANO1-deficient PC-3 cells. Notably, luteolin not only inhibited ANO1 channel activity, but also strongly decreased protein expression levels of ANO1. Our results suggest that downregulation of ANO1 by luteolin is a potential mechanism for the anticancer effect of luteolin.


Subject(s)
Chloride Channels/antagonists & inhibitors , Chloride Channels/metabolism , Luteolin/pharmacology , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/metabolism , Prostatic Neoplasms/metabolism , Aniline Compounds/pharmacology , Animals , Anoctamin-1 , Calcium/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cells, Cultured , Humans , Immunoblotting , Kaempferols/pharmacology , Male , Patch-Clamp Techniques , Rats , Real-Time Polymerase Chain Reaction , Wound Healing/drug effects , Xanthenes/pharmacology
5.
PLoS One ; 11(5): e0155771, 2016.
Article in English | MEDLINE | ID: mdl-27219012

ABSTRACT

Anoctamin1 (ANO1)/transmembrane protein 16A (TMEM16A), a calcium-activated chloride channel (CaCC), is involved in many physiological functions such as fluid secretion, smooth muscle contraction, nociception and cancer progression. To date, only a few ANO1 inhibitors have been described, and these have low potency and selectivity for ANO1. Here, we performed a high-throughput screening to identify highly potent and selective small molecule inhibitors of ANO1. Three novel ANO1 inhibitors were discovered from screening of 54,400 synthetic small molecules, and they were found to fully block ANO1 channel activity with an IC50 < 3 µM. Electrophysiological analysis revealed that the most potent inhibitor, 2-(4-chloro-2-methylphenoxy)-N-[(2-methoxyphenyl)methylideneamino]-acetamide (Ani9), completely inhibited ANO1 chloride current with submicromolar potency. Notably, unlike previous small-molecule ANO1 inhibitors identified to date, Ani9 displayed high selectivity for ANO1 as compared to ANO2, which shares a high amino acid homology to ANO1. In addition, Ani9 did not affect the intracellular calcium signaling and CFTR chloride channel activity. Our results suggest that Ani9 may be a useful pharmacological tool for studying ANO1 and a potential development candidate for drug therapy of cancer, hypertension, pain, diarrhea and asthma.


Subject(s)
Acetamides/pharmacology , Chloride Channels/antagonists & inhibitors , Hydrazones/pharmacology , Membrane Proteins/metabolism , Neoplasm Proteins/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Anoctamin-1 , Anoctamins , Calcium/metabolism , Cell Line , Chloride Channels/genetics , Gene Expression Regulation/drug effects , High-Throughput Screening Assays , Humans , Membrane Proteins/genetics , Neoplasm Proteins/genetics , Sequence Homology, Amino Acid
6.
PLoS One ; 11(2): e0149131, 2016.
Article in English | MEDLINE | ID: mdl-26863533

ABSTRACT

The most common mutation of CFTR, affecting approximately 90% of CF patients, is a deletion of phenylalanine at position 508 (F508del, ΔF508). Misfolding of ΔF508-CFTR impairs both its trafficking to the plasma membrane and its chloride channel activity. To identify small molecules that can restore channel activity of ΔF508-CFTR, we synthesized and evaluated eighteen novel hydroxypyrazoline analogues as CFTR potentiators. To elucidate potentiation activities of hydroxypyrazolines for ΔF508-CFTR, CFTR activity was measured using a halide-sensitive YFP assay, Ussing chamber assay and patch-clamp technique. Compounds 7p, 7q and 7r exhibited excellent potentiation with EC50 value <10 µM. Among the compounds, 7q (a novel CFTR potentiator, CP7q) showed the highest potentiation activity with EC50 values of 0.88 ± 0.11 and 4.45 ± 0.31 µM for wild-type and ΔF508-CFTR, respectively. In addition, CP7q significantly potentiated chloride conductance of G551D-CFTR, a CFTR gating mutant; its maximal potentiation activity was 1.9 fold higher than the well-known CFTR potentiator genistein. Combination treatment with CP7q and VX-809, a corrector of ΔF508-CFTR, significantly enhanced functional rescue of ΔF508-CFTR compared with VX-809 alone. CP7q did not alter the cytosolic cAMP level and showed no cytotoxicity at the concentration showing maximum efficacy. The hydroxypyrazolines may be potential development candidates for drug therapy of cystic fibrosis.


Subject(s)
Chlorides/chemistry , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Pyrazoles/therapeutic use , Aminopyridines/therapeutic use , Animals , Bacterial Proteins/chemistry , Benzodioxoles/therapeutic use , Cell Line , Cell Line, Tumor , Cell Membrane/metabolism , Cell Proliferation , Cyclic AMP/metabolism , Epithelial Cells/cytology , Gene Deletion , Genistein/chemistry , Humans , Luminescent Proteins/chemistry , Mutation , Nose/physiology , Patch-Clamp Techniques , Phenylalanine/genetics , Rats , Structure-Activity Relationship , Sulfonamides/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...