Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38282698

ABSTRACT

Deep learning methods have achieved a lot of success in various applications involving converting wearable sensor data to actionable health insights. A common application areas is activity recognition, where deep-learning methods still suffer from limitations such as sensitivity to signal quality, sensor characteristic variations, and variability between subjects. To mitigate these issues, robust features obtained by topological data analysis (TDA) have been suggested as a potential solution. However, there are two significant obstacles to using topological features in deep learning: (1) large computational load to extract topological features using TDA, and (2) different signal representations obtained from deep learning and TDA which makes fusion difficult. In this paper, to enable integration of the strengths of topological methods in deep-learning for time-series data, we propose to use two teacher networks - one trained on the raw time-series data, and another trained on persistence images generated by TDA methods. These two teachers are jointly used to distill a single student model, which utilizes only the raw time-series data at test-time. This approach addresses both issues. The use of KD with multiple teachers utilizes complementary information, and results in a compact model with strong supervisory features and an integrated richer representation. To assimilate desirable information from different modalities, we design new constraints, including orthogonality imposed on feature correlation maps for improving feature expressiveness and allowing the student to easily learn from the teacher. Also, we apply an annealing strategy in KD for fast saturation and better accommodation from different features, while the knowledge gap between the teachers and student is reduced. Finally, a robust student model is distilled, which can at test-time uses only the time-series data as an input, while implicitly preserving topological features. The experimental results demonstrate the effectiveness of the proposed method on wearable sensor data. The proposed method shows 71.74% in classification accuracy on GENEActiv with WRN16-1 (1D CNNs) student, which outperforms baselines and takes much less processing time (less than 17 sec) than teachers on 6k testing samples.

2.
Article in English | MEDLINE | ID: mdl-37584045

ABSTRACT

Time-series are commonly susceptible to various types of corruption due to sensor-level changes and defects which can result in missing samples, sensor and quantization noise, unknown calibration, unknown phase shifts etc. These corruptions cannot be easily corrected as the noise model may be unknown at the time of deployment. This also results in the inability to employ pre-trained classifiers, trained on (clean) source data. In this paper, we present a general framework and models for time-series that can make use of (unlabeled) test samples to estimate the noise model-entirely at test time. To this end, we use a coupled decoder model and an additional neural network which acts as a learned noise model simulator. We show that the framework is able to "clean" the data so as to match the source training data statistics and the cleaned data can be directly used with a pre-trained classifier for robust predictions. We perform empirical studies on diverse application domains with different types of sensors, clearly demonstrating the effectiveness and generality of this method.

3.
Article in English | MEDLINE | ID: mdl-38818128

ABSTRACT

Wearable sensor data analysis with persistence features generated by topological data analysis (TDA) has achieved great successes in various applications, however, it suffers from large computational and time resources for extracting topological features. In this paper, our approach utilizes knowledge distillation (KD) that involves the use of multiple teacher networks trained with the raw time-series and persistence images generated by TDA, respectively. However, direct transfer of knowledge from the teacher models utilizing different characteristics as inputs to the student model results in a knowledge gap and limited performance. To address this problem, we introduce a robust framework that integrates multimodal features from two different teachers and enables a student to learn desirable knowledge effectively. To account for statistical differences in multimodalities, entropy based constrained adaptive weighting mechanism is leveraged to automatically balance the effects of teachers and encourage the student model to adequately adopt the knowledge from two teachers. To assimilate dissimilar structural information generated by different style models for distillation, batch and channel similarities within a mini-batch are used. We demonstrate the effectiveness of the proposed method on wearable sensor data.

4.
IEEE Internet Things J ; 9(14): 12848-12860, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35813017

ABSTRACT

Deep neural networks are parametrized by several thousands or millions of parameters, and have shown tremendous success in many classification problems. However, the large number of parameters makes it difficult to integrate these models into edge devices such as smartphones and wearable devices. To address this problem, knowledge distillation (KD) has been widely employed, that uses a pre-trained high capacity network to train a much smaller network, suitable for edge devices. In this paper, for the first time, we study the applicability and challenges of using KD for time-series data for wearable devices. Successful application of KD requires specific choices of data augmentation methods during training. However, it is not yet known if there exists a coherent strategy for choosing an augmentation approach during KD. In this paper, we report the results of a detailed study that compares and contrasts various common choices and some hybrid data augmentation strategies in KD based human activity analysis. Research in this area is often limited as there are not many comprehensive databases available in the public domain from wearable devices. Our study considers databases from small scale publicly available to one derived from a large scale interventional study into human activity and sedentary behavior. We find that the choice of data augmentation techniques during KD have a variable level of impact on end performance, and find that the optimal network choice as well as data augmentation strategies are specific to a dataset at hand. However, we also conclude with a general set of recommendations that can provide a strong baseline performance across databases.

5.
Article in English | MEDLINE | ID: mdl-37583442

ABSTRACT

Converting wearable sensor data to actionable health insights has witnessed large interest in recent years. Deep learning methods have been utilized in and have achieved a lot of successes in various applications involving wearables fields. However, wearable sensor data has unique issues related to sensitivity and variability between subjects, and dependency on sampling-rate for analysis. To mitigate these issues, a different type of analysis using topological data analysis has shown promise as well. Topological data analysis (TDA) captures robust features, such as persistence images (PI), in complex data through the persistent homology algorithm, which holds the promise of boosting machine learning performance. However, because of the computational load required by TDA methods for large-scale data, integration and implementation has lagged behind. Further, many applications involving wearables require models to be compact enough to allow deployment on edge-devices. In this context, knowledge distillation (KD) has been widely applied to generate a small model (student model), using a pre-trained high-capacity network (teacher model). In this paper, we propose a new KD strategy using two teacher models - one that uses the raw time-series and another that uses persistence images from the time-series. These two teachers then train a student using KD. In essence, the student learns from heterogeneous teachers providing different knowledge. To consider different properties in features from teachers, we apply an annealing strategy and adaptive temperature in KD. Finally, a robust student model is distilled, which utilizes the time series data only. We find that incorporation of persistence features via second teacher leads to significantly improved performance. This approach provides a unique way of fusing deep-learning with topological features to develop effective models.

6.
Sensors (Basel) ; 16(4): 453, 2016 Mar 30.
Article in English | MEDLINE | ID: mdl-27043564

ABSTRACT

Recently, human detection has been used in various applications. Although visible light cameras are usually employed for this purpose, human detection based on visible light cameras has limitations due to darkness, shadows, sunlight, etc. An approach using a thermal (far infrared light) camera has been studied as an alternative for human detection, however, the performance of human detection by thermal cameras is degraded in case of low temperature differences between humans and background. To overcome these drawbacks, we propose a new method for human detection by using thermal camera images. The main contribution of our research is that the thresholds for creating the binarized difference image between the input and background (reference) images can be adaptively determined based on fuzzy systems by using the information derived from the background image and difference values between background and input image. By using our method, human area can be correctly detected irrespective of the various conditions of input and background (reference) images. For the performance evaluation of the proposed method, experiments were performed with the 15 datasets captured under different weather and light conditions. In addition, the experiments with an open database were also performed. The experimental results confirm that the proposed method can robustly detect human shapes in various environments.

7.
Sensors (Basel) ; 15(5): 10580-615, 2015 May 05.
Article in English | MEDLINE | ID: mdl-25951341

ABSTRACT

With the development of intelligent surveillance systems, the need for accurate detection of pedestrians by cameras has increased. However, most of the previous studies use a single camera system, either a visible light or thermal camera, and their performances are affected by various factors such as shadow, illumination change, occlusion, and higher background temperatures. To overcome these problems, we propose a new method of detecting pedestrians using a dual camera system that combines visible light and thermal cameras, which are robust in various outdoor environments such as mornings, afternoons, night and rainy days. Our research is novel, compared to previous works, in the following four ways: First, we implement the dual camera system where the axes of visible light and thermal cameras are parallel in the horizontal direction. We obtain a geometric transform matrix that represents the relationship between these two camera axes. Second, two background images for visible light and thermal cameras are adaptively updated based on the pixel difference between an input thermal and pre-stored thermal background images. Third, by background subtraction of thermal image considering the temperature characteristics of background and size filtering with morphological operation, the candidates from whole image (CWI) in the thermal image is obtained. The positions of CWI (obtained by background subtraction and the procedures of shadow removal, morphological operation, size filtering, and filtering of the ratio of height to width) in the visible light image are projected on those in the thermal image by using the geometric transform matrix, and the searching regions for pedestrians are defined in the thermal image. Fourth, within these searching regions, the candidates from the searching image region (CSI) of pedestrians in the thermal image are detected. The final areas of pedestrians are located by combining the detected positions of the CWI and CSI of the thermal image based on OR operation. Experimental results showed that the average precision and recall of detecting pedestrians are 98.13% and 88.98%, respectively.

8.
Sensors (Basel) ; 15(3): 6763-88, 2015 Mar 19.
Article in English | MEDLINE | ID: mdl-25808774

ABSTRACT

The need for computer vision-based human detection has increased in fields, such as security, intelligent surveillance and monitoring systems. However, performance enhancement of human detection based on visible light cameras is limited, because of factors, such as nonuniform illumination, shadows and low external light in the evening and night. Consequently, human detection based on thermal (far-infrared light) cameras has been considered as an alternative. However, its performance is influenced by the factors, such as low image resolution, low contrast and the large noises of thermal images. It is also affected by the high temperature of backgrounds during the day. To solve these problems, we propose a new method for detecting human areas in thermal camera images. Compared to previous works, the proposed research is novel in the following four aspects. One background image is generated by median and average filtering. Additional filtering procedures based on maximum gray level, size filtering and region erasing are applied to remove the human areas from the background image. Secondly, candidate human regions in the input image are located by combining the pixel and edge difference images between the input and background images. The thresholds for the difference images are adaptively determined based on the brightness of the generated background image. Noise components are removed by component labeling, a morphological operation and size filtering. Third, detected areas that may have more than two human regions are merged or separated based on the information in the horizontal and vertical histograms of the detected area. This procedure is adaptively operated based on the brightness of the generated background image. Fourth, a further procedure for the separation and removal of the candidate human regions is performed based on the size and ratio of the height to width information of the candidate regions considering the camera viewing direction and perspective projection. Experimental results with two types of databases confirm that the proposed method outperforms other methods.

SELECTION OF CITATIONS
SEARCH DETAIL
...