Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 4(3): 813-826, 2014 Sep 11.
Article in English | MEDLINE | ID: mdl-28344250

ABSTRACT

Tuberculosis is a major problem in public health. While new effective treatments to combat the disease are currently under development, they tend suffer from poor solubility often resulting in low and/or inconsistent oral bioavailability. Mesoporous materials are here investigated in an in vitro intracellular assay, for the effective delivery of compound PA-824; a poorly soluble bactericidal agent being developed against Tuberculosis (TB). Mesoporous materials enhance the solubility of PA-824; however, this is not translated into a higher antibacterial activity in TB-infected macrophages after 5 days of incubation, where similar values are obtained. The lack of improved activity may be due to insufficient release of the drug from the mesopores in the context of the cellular environment. However, these results show promising data for the use of mesoporous particles in the context of oral delivery with expected improvements in bioavailability.

2.
Comb Chem High Throughput Screen ; 15(8): 656-65, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22364550

ABSTRACT

Embryonic stem cells, due to their self-renewal and pluripotency properties, can be used to repair damaged tissues and as an unlimited source of differentiated cells. Although stem cells represent an important opportunity for cell based therapy and small molecules screening (in the context of drug or target discovery) many drawbacks are still preventing their widespread use. One of the most significant limitations is related to the complexity, as well as the reliability, of current protocols driving stem cells into any homogeneously differentiated cellular population. In this respect there is a strong demand for molecular agents promoting differentiation and thereby enabling robust, efficient and safe production of differentiated cells. In order to identify novel molecules that enhance early stages of differentiation, we developed an image based high content screening (HCS) approach using human embryonic stem cells (hESC). In our approach, we took advantage of custom image mining software specifically adapted for the selection of stem cell differentiation agents and the rejection of false positive hits. As a proof of concept -3500 small molecules originating from commercial libraries were screened and a number of molecules of interests were identified. These molecules show stem cell differentiation properties comparable to the phenotypic signature obtained with the reference compound retinoic acid.


Subject(s)
Cell Differentiation/drug effects , Embryonic Stem Cells/drug effects , High-Throughput Screening Assays/methods , Image Processing, Computer-Assisted/methods , Small Molecule Libraries/pharmacology , Cell Line , Drug Evaluation, Preclinical/methods , Embryonic Stem Cells/cytology , Humans , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...