Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 416: 126162, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-34492940

ABSTRACT

A method based on the corona discharge produced by high voltage alternating current (AC) and direct current (DC) over a Pd/γ-Al2O3 catalyst supported on a honeycomb structure monolith was developed to eliminate ethyl acetate (EA) from the air at atmospheric pressure. The characteristics of the AC and DC corona discharge generated inside the honeycomb structure monolith were investigated by varying the humidity, gas hourly space velocity (GHSV), and temperature. The results showed that the DC corona discharge is more stable and easily operated at different operating conditions such as humidity, GHSV, and gas temperature compared to the AC discharge. At a given applied voltage, the EA conversion in the DC honeycomb catalyst discharge is, therefore, higher compared with that in the AC honeycomb catalyst discharge (e.g., 96% of EA conversion compared with approximately 68%, respectively, at 11.2 kV). These new results can open opportunities for wide applications of DC corona discharge combined with honeycomb catalysts to VOC treatment.

2.
Sci Rep ; 8(1): 12037, 2018 Aug 13.
Article in English | MEDLINE | ID: mdl-30104691

ABSTRACT

This study investigated the mutual interaction between the plasma and plasma treated water (PTW). Many works have shown that the plasma treatment decreases the pH of PTW due to nitric oxide electrolyte ion but the interactions between PTW and the plasma are still largely unknown. We investigated the effect of PTW on a plasma as well as the effect of a plasma on PTW using a pin-to-liquid discharge system. It is found that PTW affects not only the chemical properties but also the physical properties of the plasma such as breakdown voltage and concentration of plasma column. The decrease of the liquid surface tension of PTW due to nitric oxide electrolyte ion from the plasma results in the increase of plasma current onto the surface of PTW and vice versa. The feedback process will be continued until the transition from normal discharge to abnormal discharge. These results can be basic data for the development of plasma sources to treat liquids.

SELECTION OF CITATIONS
SEARCH DETAIL
...