Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38931606

ABSTRACT

Human pose estimation (HPE) is a technique used in computer vision and artificial intelligence to detect and track human body parts and poses using images or videos. Widely used in augmented reality, animation, fitness applications, and surveillance, HPE methods that employ monocular cameras are highly versatile and applicable to standard videos and CCTV footage. These methods have evolved from two-dimensional (2D) to three-dimensional (3D) pose estimation. However, in real-world environments, current 3D HPE methods trained on laboratory-based motion capture data encounter challenges, such as limited training data, depth ambiguity, left/right switching, and issues with occlusions. In this study, four 3D HPE methods were compared based on their strengths and weaknesses using real-world videos. Joint position correction techniques were proposed to eliminate and correct anomalies such as left/right inversion and false detections of joint positions in daily life motions. Joint angle trajectories were obtained for intuitive and informative human activity recognition using an optimization method based on a 3D humanoid simulator, with the joint position corrected by the proposed technique as the input. The efficacy of the proposed method was verified by applying it to three types of freehand gymnastic exercises and comparing the joint angle trajectories during motion.


Subject(s)
Deep Learning , Joints , Posture , Humans , Posture/physiology , Joints/physiology , Imaging, Three-Dimensional/methods , Algorithms , Movement/physiology , Video Recording/methods
2.
NPJ Parkinsons Dis ; 7(1): 42, 2021 May 14.
Article in English | MEDLINE | ID: mdl-33990608

ABSTRACT

This study aimed to evaluate the effect of levodopa on the phase coordination index (PCI) and gait asymmetry (GA) of patients with Parkinson's disease (PD) and to investigate correlations between the severity of motor symptoms and gait parameters measured using an inertial sensor. Twenty-six patients with mild-to-moderate-stage PD who were taking levodopa participated in this study. The Unified Parkinson's Disease Rating Scale part III (UPDRS III) was used to assess the severity of motor impairment. The Postural Instability and Gait Difficulty (PIGD) subscore was calculated from UPDRS III. Patients were assessed while walking a 20-m corridor in both "OFF" and "ON" levodopa medication states, and gait analysis was performed using inertial sensors. We investigated the changes in gait parameters after taking levodopa and the correlations between UPDRS III, PIGD, and gait parameters. There was a significant improvement in PCI after taking levodopa. No significant effect of levodopa on GA was found. In "OFF" state, PCI and GA were not correlated with UPDRS III and PIGD. However, in "ON" state, PCI was the only gait parameter correlating with UPDRS III, and it was also highly correlated with PIGD compared to other gait parameters. Significant improvement in bilateral-phase coordination was identified in patients with PD after taking levodopa, without significant change in gait symmetricity. Considering the high correlation with UDPRS III and PIGD in "ON" states, PCI may be a useful and quantitative parameter to measure the severity of motor symptoms in PD patients who are on medication.

3.
PLoS One ; 14(10): e0222913, 2019.
Article in English | MEDLINE | ID: mdl-31574130

ABSTRACT

Inertial measurement unit (IMU)-based gait analysis can be used to quantitatively analyze the bilateral coordination and gait asymmetry (GA). The purpose of this study was to investigate changes in bilateral coordination and GA due to gait speed using an IMU based gait analysis and identify spatiotemporal factors affecting bilateral coordination and GA. Eighty healthy adults (40 men and 40 women) participated in the study. The mean age was 26.2 years, and the mean body mass index was 22.8 kg/m2. Three different walking speeds (80%, 100%, and 120% of preferred walking speed) on a treadmill were applied for 1 min of continuous level walking using a shoe-type IMU-based gait analysis system. The phase coordination index (PCI) and GA were calculated on three different walking speeds. Several variables (gait speed, height, body mass index, cadence, and step length) were analyzed as possible factors affecting the PCI and GA. Bilateral coordination and GA improved during fast walking (p = 0.005 and p = 0.019, respectively) and deteriorated during slow walking (p<0.001 and p = 0.008, respectively), compared with the participants' preferred walking speeds. The correlation analysis revealed that PCI was negatively correlated with step length at each walking condition and lower gait speed was negatively correlated with PCI and GA during slow walking. Both bilateral coordination and GA had a negative linear relationship with gait speed, showing an improvement in the fast walking condition and deterioration in the slow walking condition. Step length was the factor associated with the change in the bilateral coordination.


Subject(s)
Gait Analysis , Gait/physiology , Walking/physiology , Adult , Biomechanical Phenomena , Exercise Test , Female , Humans , Male , Shoes , Walking Speed/physiology
4.
J Neuroeng Rehabil ; 15(1): 38, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29764466

ABSTRACT

BACKGROUND: When examining participants with pathologies, a shoe-type inertial measurement unit (IMU) system with sensors mounted on both the left and right outsoles may be more useful for analysis and provide better stability for the sensor positions than previous methods using a single IMU sensor or attached to the lower back and a foot. However, there have been few validity analyses of shoe-type IMU systems versus reference systems for patients with Parkinson's disease (PD) walking continuously with a steady-state gait in a single direction. Therefore, the purpose of this study is to assess the validity of the shoe-type IMU system versus a 3D motion capture system for patients with PD during 1 min of continuous walking on a treadmill. METHODS: Seventeen participants with PD successfully walked on a treadmill for 1 min. The shoe-type IMU system and a motion capture system comprising nine infrared cameras were used to collect the treadmill walking data with participants moving at their own preferred speeds. All participants took anti-parkinsonian medication at least 3 h before the treadmill walk. An intraclass correlation coefficient analysis and the associated 95% confidence intervals were used to evaluate the validity of the resultant linear acceleration and spatiotemporal parameters for the IMU and motion capture systems. RESULTS: The resultant linear accelerations, cadence, left step length, right step length, left step time, and right step time showed excellent agreement between the shoe-type IMU and motion capture systems. CONCLUSIONS: The shoe-type IMU system provides reliable data and can be an alternative measurement tool for objective gait analysis of patients with PD in a clinical environment.


Subject(s)
Gait Analysis/instrumentation , Parkinson Disease/physiopathology , Shoes , Wearable Electronic Devices , Aged , Female , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...