Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 28(21): 215207, 2017 May 26.
Article in English | MEDLINE | ID: mdl-28474604

ABSTRACT

The surface states protected by time-reversal symmetry in 3-dimensional topological insulators have recently been confirmed by angle-resolved photoemission spectroscopy, scanning tunneling microscopy, quantum transport and so on. However, the electronic properties of ultra-thin topological insulator films have not been extensively studied, especially when the films are grown on metal substrates. In this paper, we have elucidated the local behaviors of the electronic states of ultra-thin topological insulator Bi2Se3 grown with molecular beam epitaxy on Au(111) using scanning tunneling microscopy/spectroscopy. We have observed linear dispersion of electron interference patterns at higher energies than the Fermi energy that were not accessible by conventional angle-resolved photoemission spectroscopy. Moreover, the dispersion of the interference patterns varies with the film thickness, which is explained by band bending near the interface between the topological insulator and the metal substrate. Our experiments demonstrate that interfacial effects in thin topological insulator films on metal substrate can be sensed using scanning tunneling spectroscopy.

2.
Nanoscale Res Lett ; 10(1): 489, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26694079

ABSTRACT

We investigate the surface states of topological insulator (TI) Bi2Se3 thin films grown on Si nanocrystals and Al2O3 substrates by using terahertz (THz) emission spectroscopy. Compared to bulk crystalline Bi2Te2Se, film TIs exhibit distinct behaviors in the phase and amplitude of emitted THz radiation. In particular, Bi2Se3 grown on Al2O3 shows an anisotropic response with a strong modulation of the THz signal in its phase. From x-ray diffraction, we find that the crystal plane of the Bi2Se3 films is inclined with respect to the plane of the Al2O3 substrate by about 0.27°. This structural anisotropy affects the dynamics of photocarriers and hence leads to the observed anisotropic response in the THz emission. Such relevance demonstrates that THz emission spectroscopy can be a sensitive tool to investigate the fine details of the surface crystallography and electrostatics of thin film TIs.

3.
Phys Chem Chem Phys ; 15(38): 16019-23, 2013 Oct 14.
Article in English | MEDLINE | ID: mdl-23958746

ABSTRACT

Methods to decouple epitaxial graphene from metal substrates have been extensively studied, with anticipation of observing unperturbed Dirac cone properties, but its local electronic structures were rarely studied. Here, we investigated the local variations of Dirac cones recovered using oxygen intercalation applied to epitaxial graphene on Ru(0001) using scanning tunneling microscopy and spectroscopy (STM and STS). New V-shaped features, which appear in the STS data at the oxygen-intercalated graphene regions, are attributed to the signatures of recovered Dirac cones. The Dirac point energy was observed at 0.48 eV below the Fermi level, different from previous photoemission results because of different oxygen coverages. The observed spatial variations of Dirac point energy were explained by the weakly protruding network structures caused by a small net strain in graphene. Our study shows that oxygen-intercalated graphene provides an excellent platform for further graphene research at the nano-meter scale with unperturbed Dirac cones.

4.
Chemphyschem ; 14(6): 1177-81, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23460473

ABSTRACT

The role of halogen bonds in self-assembled networks for systems with Br and I ligands has recently been studied with scanning tunneling microscopy (STM), which provides physical insight at the atomic scale. Here, we study the supramolecular interactions of 1,5-dichloroanthraquinone molecules on Au(111), including Cl ligands, by using STM. Two different molecular structures of chevron and square networks are observed, and their molecular models are proposed. Both molecular structures are stabilized by intermolecular Cl⋅⋅⋅H and O⋅⋅⋅H hydrogen bonds with marginal contributions from Cl-related halogen bonds, as revealed by density functional theory calculations. Our study shows that, in contrast to Br- and I-related halogen bonds, Cl-related halogen bonds weakly contribute to the molecular structure due to a modest positive potential (σ hole) of the Cl ligands.

5.
Nanotechnology ; 22(46): 465602, 2011 Nov 18.
Article in English | MEDLINE | ID: mdl-22033033

ABSTRACT

Atomically flat thin films of Bi(2)Se(3) were grown on Au(111) metal substrate using molecular beam epitaxy. Hexagonal atomic structures and quintuple layer steps were observed at the surfaces of grown films using scanning tunneling microscopy. Multiple sharp peaks from (003) family layers were characterized by x-ray diffraction measurements. The atomic stoichiometry of Bi and Se was considered using x-ray photoemission spectroscopy. Moiré patterns were obtained at the surfaces of one quintuple layer films due to lattice mismatch between Bi(2)Se(3) and Au. Our experiments suggest that Au is a reasonable material for electrodes in Bi(2)Se(3) devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...