Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(4): e26284, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38390057

ABSTRACT

This study aimed to determine the effects of fine dust reduction, as well as the energy load reduction in association with the improvement plans by measuring the airtightness and indoor and outdoor fine dust concentrations in middle and high school classrooms and by identifying the fine dust inflow paths. The air tightness and indoor and outdoor fine dust concentrations were measured at two schools, and the paths of outdoor fine dust inflow were identified for an extensive analysis of the effects of fine dust reduction and the energy load reduction in association with improvement plans. Air tightness in the classroom at school A and B was improved by 32.26% and 38.58% with sealing, respectively. Analyzing the outdoor air inflow paths at school B according to the variation in air tightness, the probability of outdoor air inflow increased in the following order from the highest to the lowest: corridor windows, corridor doors, exterior windows, supply and exhaust units. For the rate of reduction in heating load, the highest rate was shown to be 27% at school A with improved air tightness at the exterior windows and 32% at school B with improved air tightness at the interior doors. This is expected to be reflected in the selection of equipment such as heat pumps and show cost-saving effects such as capacity reduction.

2.
PLoS One ; 18(12): e0290141, 2023.
Article in English | MEDLINE | ID: mdl-38100485

ABSTRACT

PURPOSE: Patients with rectal cancer without distant metastases are typically treated with radical surgery. Post curative resection, several factors can affect tumor recurrence. This study aimed to analyze factors related to rectal cancer recurrence after curative resection using different machine learning techniques. METHODS: Consecutive patients who underwent curative surgery for rectal cancer between 2004 and 2018 at Gil Medical Center were included. Patients with stage IV disease, colon cancer, anal cancer, other recurrent cancer, emergency surgery, or hereditary malignancies were excluded from the study. The Synthetic Minority Oversampling Technique with Tomek link (SMOTETomek) technique was used to compensate for data imbalance between recurrent and no-recurrent groups. Four machine learning methods, logistic regression (LR), support vector machine (SVM), random forest (RF), and Extreme gradient boosting (XGBoost), were used to identify significant factors. To overfit and improve the model performance, feature importance was calculated using the permutation importance technique. RESULTS: A total of 3320 patients were included in the study. After exclusion, the total sample size of the study was 961 patients. The median follow-up period was 60.8 months (range:1.2-192.4). The recurrence rate during follow-up was 13.2% (n = 127). After applying the SMOTETomek method, the number of patients in both groups, recurrent and non-recurrent group were equalized to 667 patients. After analyzing for 16 variables, the top eight ranked variables {pathologic Tumor stage (pT), sex, concurrent chemoradiotherapy, pathologic Node stage (pN), age, postoperative chemotherapy, pathologic Tumor-Node-Metastasis stage (pTNM), and perineural invasion} were selected based on the order of permutational importance. The highest area under the curve (AUC) was for the SVM method (0.831). The sensitivity, specificity, and accuracy were found to be 0.692, 0.814, and 0.798, respectively. The lowest AUC was obtained for the XGBoost method (0.804), with a sensitivity, specificity, and accuracy of 0.308, 0.928, and 0.845, respectively. The variable with highest importance was pT as assessed through SVM, RF, and XGBoost (0.06, 0.12, and 0.13, respectively), whereas pTNM had the highest importance when assessed by LR (0.05). CONCLUSIONS: In the current study, SVM showed the best AUC, and the most influential factor across all machine learning methods except LR was found to be pT. The rectal cancer patients who have a high pT stage during postoperative follow-up are need to be more close surveillance.


Subject(s)
Neoplasm Recurrence, Local , Rectal Neoplasms , Humans , Rectal Neoplasms/surgery , Rectal Neoplasms/pathology , Rectum/pathology , Chemoradiotherapy , Machine Learning
3.
Adv Sci (Weinh) ; 10(30): e2304715, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37565602

ABSTRACT

On-demand photo-steerable amphibious rolling motions are generated by the structural engineering of monolithic soft locomotors. Photo-morphogenesis of azobenzene-functionalized liquid crystal polymer networks (azo-LCNs) is designed from spiral ribbon to helicoid helices, employing a 270° super-twisted nematic molecular geometry with aspect ratio variations of azo-LCN strips. Unlike the intermittent and biased rolling of spiral ribbon azo-LCNs with center-of-mass shifting, the axial torsional torque of helicoid azo-LCNs enables continuous and straight rolling at high rotation rates (≈720 rpm). Furthermore, center-tapered helicoid structures with wide edges are introduced for effectively accelerating photo-motilities while maintaining directional controllability. Irrespective of surface conditions, the photo-induced rotational torque of center-tapered helicoid azo-LCNs can be transferred to interacting surfaces, as manifested by steep slope climbing and paddle-like swimming multimodal motilities. Finally, the authors demonstrate continuous curvilinear guidance of soft locomotors, bypassing obstacles and reaching desired destinations through real-time on-demand photo-steering.

4.
ACS Nano ; 16(11): 18101-18109, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36282603

ABSTRACT

Chiral morphology has been intensively studied in various fields including biology, organic chemistry, pharmaceuticals, and optics. On-demand and dynamic chiral inversion not only cannot be realized in most intrinsically chiral materials but also has mostly been limited to chemical or light-induced methods. Herein, we report reversible real-time magneto-mechanical chiral inversion of a three-dimensional (3D) micropillar array between achiral, clockwise, and counterclockwise chiral arrangements. Inspired by the flower corolla, achiral arrays of five and six radially arranged semicylindrical micropillars were employed as model systems to investigate the dynamic symmetry properties of arrays consisting of odd and even numbers of micropillars, respectively. Each micropillar underwent twisting actuation with a different twisting angle depending on the angle with the magnetic field direction and magnetic flux density, thereby collectively changing the chirality from the achiral to chiral state. Importantly, the morphological handedness of the micropillars was inverted within a few seconds by manipulating the direction of the magnetic field. A chiral morphology consisting of magnetically twisted micropillars was shape-fixed by the introduction of a polymeric binder. This binder could be simply washed off to return the shape-fixed twisted micropillars to their initial straight state. Magnetically programmable and reproducible 3D flower corolla-like micropillar arrays are expected to expand the potential of shape-reconfigurable devices that require real-time chiral manipulation in ambient environments.


Subject(s)
Flowers , Magnetic Fields
5.
Adv Sci (Weinh) ; 9(36): e2203396, 2022 12.
Article in English | MEDLINE | ID: mdl-36316238

ABSTRACT

Miniaturized untethered soft robots are recently exploited to imitate multi-modal curvilinear locomotion of living creatures that perceive change of surrounding environments. Herein, the use of Caenorhabditis elegans (C. elegans) is proposed as a microscale model capable of curvilinear locomotion with mechanosensing, controlled by magnetically reconfigured 3D microtopography. Static entropic microbarriers prevent C. elegans from randomly swimming with the omega turns and provide linear translational locomotion with velocity of ≈0.14 BL s-1 . This velocity varies from ≈0.09 (for circumventing movement) to ≈0.46 (for climbing) BL s-1 , depending on magnetic bending and twisting actuation coupled with assembly of microbarriers. Furthermore, different types of neuronal mutants prevent C. elegans from implementing certain locomotion modes, indicating the potential for investigating the correlation between neurons and mechanosensing functions. This strategy promotes a platform for the contactless manipulation of miniaturized biobots and initiates interdisciplinary research for investigating sensory neurons and human diseases.


Subject(s)
Caenorhabditis elegans , Locomotion , Animals , Humans , Caenorhabditis elegans/physiology , Locomotion/physiology , Neurons , Physical Phenomena , Magnetic Phenomena
6.
ACS Macro Lett ; 11(4): 428-433, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35575341

ABSTRACT

Replica molding is one of the most common and low-cost methods for constructing microstructures for various applications, including dry adhesives, optics, tissue engineering, and strain sensors. However, replica molding provides only a single-height microstructure from a mold and master molds produced by an expensive photolithography process are required to prepare microstructures with different heights. Herein, we present a strategy to control the height of micropillars from the same mold by varying the cavity size of the micromold and the viscosity of the photocurable polyimide resin. The height of the constructed micropillar decreases in the case of small microcavities or high viscosity resin. In addition, the height of the micropillar arrays could be arbitrarily patterned by applying a masking technique. We believe that this cost-effective technique can be applied to metasurfaces for manipulation of electromagnetic signal or in biomedical applications including cell-culture and stem-cell differentiation.


Subject(s)
Cell Culture Techniques , Polymers , Tissue Engineering , Viscosity
7.
J Environ Manage ; 297: 113269, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34293676

ABSTRACT

Impervious pavements exist in large proportions in most cities owing to the high-impact development of the transportation infrastructure. However, this type of pavement causes environmental issues such as waterlogging, floods, and urban heat islands. Pervious concrete (PC), which is a novel pavement material characterized by a porous structure that allows water to percolate through it, is an important solution to these issues. This study investigates the evaporative cooling performance of eco-friendly PC with blast-furnace slag (BFS) as a cement replacement and amorphous metallic fiber (AMF) that helps to accelerate the evaporative cooling. The thermophysical properties, water permeability, and water absorption capability of the manufactured PC were measured. In addition, a scale model test and thermal conductivity analysis of the manufactured PC were conducted to evaluate the evaporative cooling effect. The results indicate that the physical and mechanical properties of the manufactured PC are typically similar to those of other PCs, and its water absorption rate reaches 1 mm/s. Relatively low water permeability helps the PCs to absorb more water, contributing to accumulate a large amount of water in the material for evaporative cooling. In addition, AMF contributes to increase thermal conductivity of PC, which allow the water inside the PCs to evaporate faster. The result shows that a higher thermal conductivity of the manufactured PC increases the evaporative cooling effect.


Subject(s)
Construction Materials , Hot Temperature , Cities , Porosity , Water
8.
ACS Appl Mater Interfaces ; 13(30): 36253-36261, 2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34310107

ABSTRACT

The arrangement of mesogenic units determines mechanical response of the liquid crystal polymer network (LCN) film to heat. Here, we show an interesting approach to programming three-dimensional patterns of the LCN films with periodic topological defects generated by applying an electric field. The mechanical properties of three representative patterned LCN films were investigated in terms of the arrangement of mesogenic units through tensile testing. Remarkably, it was determined that LCN films showed enhanced toughness and ductility as defects increased in a given area, which is related to the elastic modulus mismatch that mitigates crack propagation. Our platform can also be used to modulate the frictional force of the patterned LCN films by varying the temperature, which can provide insight into the multiplex mechanical properties of LCN films.

9.
Environ Res ; 196: 110910, 2021 05.
Article in English | MEDLINE | ID: mdl-33639144

ABSTRACT

In order to vitalize the use of wood, which is a sustainable resource, increase the utilization of resources through the recycling of wood waste, and reduce environmental pollution in the waste disposal process, biocomposite was manufactured by using biochar which can be produced with wood waste and is effective in carbon isolation. The thermal characteristics and acetaldehyde adsorption performance of the prepared biocomposite were evaluated based on the pore characteristics, surface functional groups, crystal structure, and elemental analysis results of the biochar. As a result of the experiment, as the content of biochar increased, the thermal conductivity of the biocomposite decreased and the specific heat was not affected. The acetaldehyde concentration tended to decrease as the content of biochar increased, adsorbed up to 4.4685 ppm of acetaldehyde more than the reference. From these results, it is judged that the biocomposite produced in this study can function as a sustainable composite that uses waste wood to improve indoor air quality and satisfies the performance as a building material.


Subject(s)
Acetaldehyde , Wood , Adsorption , Charcoal
10.
Sci Total Environ ; 775: 145552, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-33611181

ABSTRACT

This study suggests a new perspective of biochar as a building material that improve not only for the strength but also hygrothermal properties. Biochar has a high porosity and surface area created by pyrolysis. It can be suitably used as a porous material because porous materials are used by incorporating into building materials for improving hygrothermal performance in the construction sector. To analyze whether biochar can be used as a functional building material to improve the hygrothermal performance, two types of biochar, made from oilseed rape (OSB) and mixed softwood (SWB), were prepared. A biochar-mortar composite was prepared according to the mixing ratio of the biochar from 2 wt% to 8 wt%, and the compressive strength and hygrothermal performance of them were analyzed. The compressive strength is the highest when 4 wt% of biochar into the mortar was mixed regardless of the type of biochar. Thermal conductivity of biochar-mortar composites was decreased as the biochar addition increased, and the value of biochar-mortar composites with 8 wt% OSB decreases by maximum 57.6% compared to the conventional cement mortar. The water vapor resistance factor of biochar-mortar composites increases, and biochar-mortar composites with 8 wt% SWB increases by maximum 50.9% compared to the reference. WUFI simulation shows that the biochar-mortar composites can contribute to a humidity control and no mold growth. The biochar-mortar composites can also contribute to energy savings although the amount of savings is insignificant. As a result, this study proved that when the mortar with biochar addition was possible to improve not only strength but also hygrothermal properties of mortar. This approach will be a new perspective that biochar can apply to the building material in practice.

11.
Carbohydr Polym ; 254: 117470, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33357925

ABSTRACT

Tunicate cellulose nanofibers (CNFs) have received widespread attention as renewable and eco-friendly engineering materials because of their high crystallinity and mechanical stiffness. Here, we report the effects of disintegration process conditions on structure-property relationships of tunicate CNFs. By varying the hydrolysis time, we could establish a correlation between crystallinity of the CNFs with linearity and stiffness, which produces different molecular ordering within their nanostructured films. Despite having identical raw materials, tensile strength and thermal conductivity of the resulting layered films varied widely, ranging from 95.6 to 205 MPa and from 1.08 to 2.37 W/mK respectively. Furthermore, nanolayered CNF films provided highly anisotropic thermal conductivities with an in- and through-plane ratio of 21.5. Our systematic investigations will provide general and practical strategies in tailoring material properties for emerging engineering applications, including flexible paper electronics, heat sink adhesives and biodegradable, implantable devices.


Subject(s)
Biocompatible Materials/chemistry , Cellulose/chemistry , Nanocomposites/chemistry , Nanofibers/chemistry , Urochordata/chemistry , Animals , Crystallization , Hydrolysis , Membranes, Artificial , Nanocomposites/ultrastructure , Nanofibers/ultrastructure , Tensile Strength , Urochordata/physiology
12.
Environ Res ; 193: 110359, 2021 02.
Article in English | MEDLINE | ID: mdl-33127398

ABSTRACT

Wood is a sustainable resource and building material. It provides an excellent response to climate change and has excellent insulation performance. However, structural defects may occur due to decay from moisture, resulting in poor dimensional stability. The rich organic substances contained in wood can lead to mold when the moisture content is consistently high, adversely affecting the health of occupants. Therefore, we attempted to compensate for the disadvantages of wood in regard to water stability while maintaining the high thermal insulation performance and carbon dioxide storage capacity, using biochar from thermally decomposed spruce under oxygen limiting conditions. A wood-derived biocomposite was prepared by mixing biochar and soft wood-based chips using the hot-press method, and the thermal conductivity, specific heat, water vapor resistance factor, moisture adsorption, and moisture desorption performances were analyzed. The thermal conductivity of WB10 with 10 wt% biochar content was 0.09301 W/mK. This is a 7.98% decrease from 0.10108 W/mK, the thermal conductivity of WB0 without biochar. The water vapor resistance factor tended to increase when the biochar ratio increased. As the proportion of biochar increased, the equilibrium moisture content in high relative humidity tended to decrease, and it was found that the moisture adsorption and desorption performances were affected by the ratio of the biochar. Therefore, wood-derived biocomposites using biochar can be used in environmentally friendly materials, with improved thermal insulation performance and water stability.


Subject(s)
Climate Change , Wood , Charcoal , Construction Materials
13.
Front Chem ; 8: 595616, 2020.
Article in English | MEDLINE | ID: mdl-33363110

ABSTRACT

In this work, a polymeric nickel complex-modified indium tin oxide (ITO) electrode was prepared by a one-step cold-plasma process of acrylic-Ni complex precursors. Also, the work provides the electrocatalytic oxidation of methanol by a polymeric Ni complex-modified electrode prepared by a simple one-step cold-plasma process. The acrylic-Ni complex precursors were synthesized by complexation of nickel (II) chloride, and acrylic acid in a small amount of water; subsequently we added N,N'-methylene-bis-acrylamide as a crosslinking agent to the complex solution. We characterized the prepared polymeric Ni complex-modified (Ni-modified) catalytic electrode by X-ray photoelectron spectroscopy, field emission scanning electron microscopy, and electrochemical methods. Electrochemical characterization showed stable redox behavior of Ni(III)/Ni(II) couples. Cyclic voltammetric experiments have shown that electrocatalytic oxidation of methanol can occur on Ni-modified catalytic electrodes, while not observed on bare ITO. As a result, this work provides the simple and easy preparation of electrocatalysts by one-step plasma process for methanol fuel cell.

14.
ACS Nano ; 14(12): 17254-17261, 2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33232120

ABSTRACT

Evaporative self-assembly of semiconducting polymers is a low-cost route to fabricating micrometer and nanoscale features for use in organic and flexible electronic devices. However, in most cases, rate is limited by the kinetics of solvent evaporation, and it is challenging to achieve uniformity over length- and time-scales that are compelling for manufacturing scale-up. In this study, we report high-throughput, continuous printing of poly(3-hexylthiophene) (P3HT) by a modified doctor blading technique with oscillatory meniscus motion-meniscus-oscillated self-assembly (MOSA), which forms P3HT features ∼100 times faster than previously reported techniques. The meniscus is pinned to a roller, and the oscillatory meniscus motion of the roller generates repetitive cycles of contact-line formation and subsequent slip. The printed P3HT lines demonstrate reproducible and tailorable structures: nanometer scale thickness, micrometer scale width, submillimeter pattern intervals, and millimeter-to-centimeter scale coverage with highly defined boundaries. The line width as well as interval of P3HT patterns can be independently controlled by varying the polymer concentration levels and the rotation rate of the roller. Furthermore, grazing incidence wide-angle X-ray scattering (GIWAXS) reveals that this dynamic meniscus control technique dramatically enhances the crystallinity of P3HT. The MOSA process can potentially be applied to other geometries, and to a wide range of solution-based precursors, and therefore will develop for practical applications in printed electronics.

15.
Small ; 16(38): e2003179, 2020 09.
Article in English | MEDLINE | ID: mdl-32794323

ABSTRACT

Magnetically active shape-reconfigurable microarrays undergo programmed actuation according to the arrangement of magnetic dipoles within the structures, achieving complex twisting and bending deformations. Cylindrical micropillars have been widely used to date, whose circular cross-sections lead to identical actuation regardless of the actuating direction. In this study, micropillars with triangular or rectangular cross-sections are designed and fabricated to introduce preferential actuation directions and explore the limits of their actuation. Using such structures, controlled liquid wetting is demonstrated on micropillar surfaces. Liquid droplets pinned on magnetic micropillar arrays undergo directional spreading when the pillars are actuated as depinning of the droplets is enabled only in certain directions. The enhanced deformation due to direction dependent magneto-mechanical actuation suggests that micropillar arrays can be fundamentally tailored to possess application specific responses and opens up opportunities to exploit more complex designs such as micropillars with polygonal cross sections. Such tunable wetting of liquids on microarray surfaces has potential to improve printing technologies via contactless reconfiguration of stamp geometry by magnetic field manipulation.

16.
ACS Appl Mater Interfaces ; 12(14): 17113-17120, 2020 Apr 08.
Article in English | MEDLINE | ID: mdl-32134249

ABSTRACT

Micro- and nanotextured surfaces with reconfigurable textures can enable advancements in the control of wetting and heat transfer, directed assembly of complex materials, and reconfigurable optics, among many applications. However, reliable and programmable directional shape in large scale is significant for prescribed applications. Herein, we demonstrate the self-directed fabrication and actuation of large-area elastomer micropillar arrays, using magnetic fields to both program a shape-directed actuation response and rapidly and reversibly actuate the arrays. Specifically, alignment of magnetic microparticles during casting of micropost arrays with hemicylindrical shapes imparts a deterministic anisotropy that can be exploited to achieve the prescribed, large-deformation bending or twisting of the pillars. The actuation coincides with the finite element method, and we demonstrate reversible, noncontact magnetic actuation of arrays of tens of thousands of pillars over hundreds of cycles, with the bending and twisting angles of up to 72 and 61°, respectively. Moreover, we demonstrate the use of the surfaces to control anisotropic liquid spreading and show that the capillary self-assembly of actuated micropost arrays enables highly complex architectures to be fabricated. The present technique could be scaled to indefinite areas using cost-effective materials and casting techniques, and the principle of shape-directed pillar actuation can be applied to other active material systems.

17.
Environ Pollut ; 261: 114137, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32066056

ABSTRACT

To improve the indoor air quality of apartments in Korea, a toluene adsorptive paint was manufactured and tested for its efficiency to remove the indoor toluene released from wallpaper adhesives. The toluene adsorptive paint was prepared by blending activated carbon and inorganic binder, and the pore characteristics and chemical functional groups of the activated carbon were analyzed to determine whether the micropores and surface functionalities of activated carbon affected toluene adsorption. Toluene adsorption performance of the toluene adsorptive paint was confirmed through static and verification experiments. The average adsorption efficiency of toluene adsorptive paint in the static experiment was 98.3% and the verification experiment confirmed that about 96.3% of toluene was adsorbed from the indoor air of the apartment. As a result, the use of toluene adsorptive paint effectively removes toluene, which may occur in the adhesive, and thus can be considered to have a good effect on the improvement of indoor air quality. Furthermore, toluene adsorptive paint has been found to be an effective way to achieve consumer wall finishing preferences and maintenance convenience.


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/analysis , Adsorption , Republic of Korea , Toluene/analysis
18.
Nat Commun ; 10(1): 4751, 2019 10 18.
Article in English | MEDLINE | ID: mdl-31628315

ABSTRACT

Magnetic soft robots facilitate the battery-free remote control of soft robots. However, parallel control of multiple magnetic robots is challenging due to interference between robots and difficult maneuvers. Here we present the orbital maneuvering of manifold magnetic soft robots. Magneto-induced motion (magnetomotility) that includes the hierarchy of rotation and resultant revolution allows for the independent control of the robot's velocity and orbital radius. The soft robot achieves a speed of 60 body length (BL) s-1, which is approximately 50, 000 times faster with 1/7 the weight of the current lightest legged soft robot. The hierarchical magnetomotility is suitable for versatile locomotion such as stairs and uphill climbing, underwater and above water swimming. Owing to their swimming functionality, a swarm of such soft robots is capable of transportation of cargo. On-demand orbital maneuvering of magnetic soft robots provides a new methodology for concurrent actuation of multiple robots exhibiting collective behaviors.

19.
Materials (Basel) ; 12(19)2019 Sep 20.
Article in English | MEDLINE | ID: mdl-31547115

ABSTRACT

In recent years, jointless soft robots have demonstrated various curvilinear motions unlike conventional robotic systems requiring complex mechanical joints and electrical design principles. The materials employed to construct soft robots are mainly programmable anisotropic polymeric materials to achieve contactless manipulation of miniaturized and lightweight soft robots through their anisotropic strain responsivity to external stimuli. Although reviews on soft actuators are extensive, those on untethered soft robots are scant. In this study, we focus on the recent progress in the manipulation of untethered soft robots upon receiving external stimuli such as magnetic fields, light, humidity, and organic solvents. For each external stimulus, we provide an overview of the working principles along with the characteristics of programmable anisotropic materials and polymeric composites used in soft robotic systems. In addition, potential applications for untethered soft robots are discussed based on the physicochemical properties of programmable anisotropic materials for the given external stimuli.

20.
Chemosphere ; 236: 124269, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31319304

ABSTRACT

Objective of this research was to characterize properties of the latent heat storage biocomposite (LHSBC) as a novel material that can be employed as a latent heat storage insulation by using biochar. Biochars produced from waste material pine cone, pine saw dust, and paper mill sludge were vacuum impregnated with a bio-based phase change material (PCM), coconut oil, to prepare LHSBCs. In particular, this paper analyzed the chemical stability, latent heat storage performance, thermal conductivity, and thermal stability of LHSBCs based on results of fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), laser flash method and thermogravimetric analysis (TGA). As a result, the LHSBCs showed a maximum latent heat storage capacity of 74.6 J/g and a low thermal conductivity of 0.030 W/mK at the maximum, confirming that LHSBCs have a high latent heat storage capacity and thermal insulation performance. With a maximum specific heat of 1.69 J/gK, a high, sensible heat storage was confirmed. In addition, all LHSBCs were found to be thermally and chemically stable. The LHSBC could be employed as a material with good thermal insulation performance and heat storage characteristics.


Subject(s)
Charcoal/chemistry , Coconut Oil/chemistry , Hot Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...