Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(1): 643-654, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38147638

ABSTRACT

Among the various existing layered compounds, silicon diselenide (SiSe2) possesses diverse chemical and physical properties, owing to its large interlayer spacing and interesting atomic arrangements. Despite the unique properties of layered SiSe2, it has not yet been used in energy applications. Herein, we introduce the synthesis of layered SiSe2 through a facile solid-state synthetic route and demonstrate its versatility as a sulfide solid electrolyte (SE) additive for all-solid-state batteries (ASSBs) and as an anode material for Li-ion batteries (LIBs). Li-argyrodites with various compositions substituted with SiSe2 are synthesized and evaluated as sulfide SEs for ASSBs. SiSe2-substituted Li-argyrodites exhibit high ionic conductivities, low activation energies, and high air stabilities. In addition, when using a sulfide SE, the ASSB full cell exhibits a high discharge/charge capacity of 202/169 mAh g-1 with a high initial Coulombic efficiency (ICE) of 83.7% and stable capacity retention at 1C after 100 cycles. Furthermore, the Li-storage properties of SiSe2 as an anode material for LIBs are evaluated, and its Li-pathway mechanism is explored by using various cutting-edge ex situ analytical tools. Moreover, the SiSe2 nanocomposite anode exhibits a high Li- insertion/extraction capacity of 950/775 mAh g-1, a high ICE of 81.6%, a fast rate capability, and stable capacity retention after 300 cycles. Accordingly, layered SiSe2 and its versatile applications as a sulfide SE additive for ASSBs and an anode material for LIBs are promising candidates in energy storage applications as well as myriad other applications.

2.
Article in English | MEDLINE | ID: mdl-36429850

ABSTRACT

Volatile organic compounds (VOCs) emitted to the atmosphere form ozone and secondary organic aerosols (SOA) by photochemical reactions. As they contain numerous harmful compounds such as carcinogens, it is necessary to analyze them from a health perspective. Given the petroleum-based organic solvents used during the drying process, large amounts of VOCs are emitted from small laundry facilities. In this study, a laundry facility located in a residential area was selected, while VOCs data emitted during the drying process were collected and analyzed using a thermal desorption-gas chromatography/mass spectrometer (TD-GC/MS). We compared the results of the solvent composition, human risk assessment, contribution of photochemical ozone creation potential (POCP), and secondary organic aerosol formation potential (SOAP) to evaluate the chemical species. Alkane-based compounds; the main components of petroleum organic solvents, were dominant. The differences in evaporation with respect to the boiling point were also discerned. The POCP contribution exhibited the same trend as the emission concentration ratios for nonane (41%), decane (34%), and undecane (14%). However, the SOAP contribution accounted for o-xylene (28%), decane (27%), undecane (25%), and nonane (9%), thus confirming the high contribution of o-xylene to SOA formation. The risk assessment showed that acrylonitrile, carbon tetrachloride, nitrobenzene, bromodichloromethane, and chloromethane among carcinogenic compounds, and bromomethane, chlorobenzene, o-xylene, and hexachloro-1, 3-butadiene were found to be hazardous, thereby excessing the standard value. Overall these results facilitate the selection and control of highly reactive and harmful VOCs emitted from the dry-cleaning process.


Subject(s)
Air Pollutants , Ozone , Petroleum , Volatile Organic Compounds , Humans , Volatile Organic Compounds/analysis , Ozone/analysis , Air Pollutants/analysis , Aerosols/analysis , Risk Assessment , Solvents , Petroleum/analysis
3.
ACS Nano ; 16(9): 13704-13714, 2022 Sep 27.
Article in English | MEDLINE | ID: mdl-35876656

ABSTRACT

Four main anode types are generally considered as typical anodes for Li-ion batteries (LIBs): Li-metal, carbon-based, alloy-based, and oxide-based anodes. Although they exhibit satisfactory electrochemical performance as LIB anodes, they cannot simultaneously satisfy all key requirements for LIB anodes: high reversible capacity, high initial Coulombic efficiency (ICE), long cycle life, fast rate capability, structural stability, and no safety concerns. Here, we suggest Li-compound anodes as a promising class of high-performance LIB anodes. Three binary (LiSn, Li2Sb, and LiBi) and three ternary (Li2ZnSb, Li5GeP3, and Li5SnP3) Li compounds were introduced as Li-compound anodes. LiSn and Li5SnP3 were selected and further modified into their nanocomposites by solid-state synthetic routes using carbon sources for high-performance LIB anodes. The Li-compound nanocomposite anodes exhibited excellent performance and simultaneously fulfilled all the key requirements for high-performance LIB anodes. Therefore, Li-compound anodes are expected to be a promising and innovative category of high-performance LIB anodes.

4.
Environ Pollut ; 307: 119578, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35688388

ABSTRACT

Long-term exposure to fine particles (PM2.5), ultrafine particles (UFPs), and volatile organic compounds (VOCs) emissions from cooking has been linked to adverse human health effects. Here, we measured the real-time number size distribution of particles emitted when cooking two served food in Chinese restaurants and estimated the emission rate of UFPs and PM2.5. Experiments were conducted under a control hood, and both online measurement and offline analysis of PM2.5 were carried out. The measured emission rates of PM2.5 generated from deep-frying and grilling were 0.68 ± 0.11 mg/min and 1.58 ± 0.25 mg/min, respectively. Moreover, the UFPs emission rate of deep-frying (4.3 × 109 #/min) is three times higher than that of grilling (1.4 × 109 #/min). Additionally, the PM2.5 emission of deep-frying was comprised of a considerable amount of α-Fe2O3 (5.7% of PM2.5 total mass), which is more toxic than other iron oxide species. A total of six carcinogenic HAPs were detected, among which formaldehyde, acrolein, and acetaldehyde were found to exceed the inhalation reference concentration (RfC) for both cooking methods. These findings can contribute to future evaluation of single particle and HAPs emission from cooking to better support toxicity assessment.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Nanoparticles , Air Pollutants/analysis , Air Pollution, Indoor/analysis , China , Cooking/methods , Environmental Monitoring/methods , Humans , Iron/analysis , Nanoparticles/analysis , Particle Size , Particulate Matter/analysis , Restaurants
5.
ACS Nano ; 16(1): 930-938, 2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35029361

ABSTRACT

Electrocatalysts with dramatically enhanced water splitting efficiency, derived from controlled structures, phase transitions, functional activation, etc., have been developed recently. Herein, we report an in situ observation of graphene-based self-healing, in which this functional activation is induced by a redox reaction. Specifically, graphene on stainless steel (SUS) switches between graphene (C-C) and graphene oxide (C-O) coordination via an electrical redox reaction to activate water splitting. A heterostructure comprising Pt-NiO thin films on single-layer graphene directly grown on a SUS substrate (Pt-NiO/Gr-SUS) was also synthesized by electrodeposition. Pt-NiO/Gr-SUS exhibited water splitting activity with low Pt loading (<1 wt %). The findings provide valuable insight for designing robust electrodes based on reversible redox-induced self-healable graphene to develop more efficient catalysts.

6.
Nanomaterials (Basel) ; 11(6)2021 May 31.
Article in English | MEDLINE | ID: mdl-34072737

ABSTRACT

The lacking of laboratory black carbon (BC) samples have long challenged the corresponding toxicological research; furthermore, the toxicity tests of engineered carbon nanoparticles were unable to reflect atmospheric BC. As a simplified approach, we have synthesized artificial BC (aBC) for the purpose of representing atmospheric BC. Surface chemical properties of aBC were controlled by thermal treatment, without transforming its physical characteristics; thus, we were able to examine the toxicological effects on A549 human lung cells arising from aBC with varying oxidation surface properties. X-ray photoelectron spectroscopy, as well as Raman and Fourier transform infrared spectroscopy, verified the presence of increased amounts of oxygenated functional groups on the surface of thermally-treated aBC, indicating aBC oxidization at elevated temperatures; aBC with increased oxygen functional group content displayed increased toxicity to A549 cells, specifically by decreasing cell viability to 45% and elevating reactive oxygen species levels up to 294% for samples treated at 800 °C.

7.
J Toxicol Environ Health A ; 84(16): 661-673, 2021 08 18.
Article in English | MEDLINE | ID: mdl-33998398

ABSTRACT

The aim of this study was to determine the effects of traffic-related particulate matter (PM) on allergic inflammation of ocular surfaces. BALB/c mice were sensitized with ovalbumin (OVA) and aluminum hydroxide via intraperitoneal injection. Two weeks later, mice were challenged with eye drops containing OVA concomitant with either traffic-related PM2.5 or vehicle eye drops. Topical OVA challenges were administered following unilateral subconjunctival injection of magnetic-bead-sorted CD11c+ dendritic cells (DC). The following were assessed: (1) clinical signs, (2) infiltration of inflammatory cells into conjunctiva, (3) serum levels of OVA-specific IgE production, and (4) T-cell cytokine secretion with topical application of PM2.5, compared to saline vehicle. PM2.5 was found to increase production of OVA-specific IgE in serum and Th2 immune response-related cytokines including interleukin (IL)-4, IL-17A, and IL-13 compared to vehicle control. It is of interest that PM2.5 treatment also elevated the population of mature DCs in draining lymph nodes (LNs). Exposure with PM2.5 was associated with a significant rise in conjunctival expression of IL-1ß, IL-6, IL-17, and TNF. After subconjunctival injection of CD11c+DCs from PM2.5-treated allergic conjunctivitis (AC) mice into naïve mice, T cell responses and OVA-specific IgE were also enhanced. Data suggest that traffic-related PM2.5 exacerbated allergic conjunctivitis as evidenced by increased infiltration of inflammatory cells into the conjunctiva and Th2 responses in the draining LNs associated with enhanced maturation of DCs. Our findings provide new insight into the hazardous potential of traffic-related PM2.5 on allergic diseases, such as asthma or atopic dermatitis.


Subject(s)
Conjunctivitis, Allergic/immunology , Dendritic Cells/metabolism , Environmental Pollutants/toxicity , Particulate Matter/toxicity , Traffic-Related Pollution/adverse effects , Animals , Conjunctivitis, Allergic/chemically induced , Conjunctivitis, Allergic/pathology , Dendritic Cells/drug effects , Dendritic Cells/immunology , Male , Mice , Mice, Inbred BALB C
8.
Sci Total Environ ; 784: 147177, 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-33895514

ABSTRACT

In this study, we examined tire and road wear microparticles (TRWMPs) in road dust along the Seoul metropolitan area, from industrial and residential areas. The road dust samples were collected via vacuum sweep methods and then filtered to obtain particles with diameters less than 75 µm. To quantify the TRWMPs in road dust, we used the raw materials of tire components, natural rubber (NR), and styrene-butadiene rubber (SBR), as standard materials. We evaluated the usability of the pyrolyzer-gas chromatography/mass spectrometry py-GC/MS method introduced in ISO/TS 20593 by confirming the decomposition temperatures of the NR and SBR by thermogravimetric (TG) and evolved gas analysis (EGA)-MS. The average of TRWMPs in industrial and residential area road dust were 22,581 and 9818 µg/g, respectively, indicating that the industrial area has 2.5 times higher TRWMPs concentration. Further, the NR, the main component of truck bus radial, to SBR, the main component of passenger car radial, ratio was slightly higher in the industrial area than in the residential area. This presumably means that the high traffic volume, including heavy duty vehicles in industrial areas, affected the higher concentration of TRWMPs. This study reveals the growing evidence of the importance of TRWMPs in road dust and how TRWMPs quantity can impact the air quality of the Seoul metropolitan area.

9.
ACS Appl Mater Interfaces ; 13(12): 14644-14652, 2021 Mar 31.
Article in English | MEDLINE | ID: mdl-33724801

ABSTRACT

Developing sensing approaches that can exploit visible light for the detection of low-concentration hydrogen at room temperatures has become increasingly important for the safe use of hydrogen in many applications. In this study, heterostructures composed of monolayer MoS2 and Pd nanoclusters (Pd/MoS2) acting as photo- and hydrogen-sensitizers are successfully fabricated in a facile and scalable manner. The uniform deposition of morphologically isotropic Pd nanoclusters (11.5 ± 2.2 nm) on monolayer MoS2 produces a plethora of active heterojunctions, effectively suppressing charge carrier recombination under light illumination. The dual photo- and hydrogen-sensitizing functionality of Pd/MoS2 can enable its use as an active sensing layer in optoelectronic hydrogen sensors. Gas-sensing examinations reveal that the sensing performance of Pd/MoS2 is enhanced three-fold under visible light illumination (17% for 140 ppm of H2) in comparison with dark light (5% for 140 ppm of H2). Photoactivation is also found to enable excellent sensing reversibility and reproducibility in the obtained sensor. As a proof-of-concept, the integration of Pd nanoclusters and monolayer MoS2 can open a new avenue for light-induced hydrogen gas sensing at room temperature.

10.
Environ Res ; 193: 110507, 2021 02.
Article in English | MEDLINE | ID: mdl-33245880

ABSTRACT

Air pollution caused by particulate matter (PM) has become a serious issue, and significant research has focused on managing large stationary emission sources, i.e., the primary sources of PM. Currently, the U.S. Environmental Protection Agency (EPA) Method 201A and ISO 23210 are predominantly employed to measure the PM emissions at large stationary sources. Method 201A is designated as a standard test method in Korea, but it is difficult to measure PM10 and PM2.5 simultaneously owing to the size of the full-set cyclone. In large stationary emission sources, the use of a serial connection of PM10 and PM2.5 cyclones is unsuitable for measurements at conventional sampling ports featuring diameters of approximately 100 mm. Therefore, in this study, PM10 and PM2.5 cyclones were developed to replace the cyclones currently used in Method 201A. The developed cyclones featured a cutoff diameter, which was confirmed by numerical and experimental analyses that were close to Method 201A. Moreover, there was an increase in the stiffness of collection efficiency. The hook adaptor, which is a key accessory used in Method 201A, was found to be applicable to the newly developed cyclones. This alternative method will help reduce the measurement time by simultaneously measuring TSP, PM10, and PM2.5 and eliminates the costs of installing or refurbishing additional sampling ports at existing large stationary sources.


Subject(s)
Air Pollutants , Air Pollution , Cyclonic Storms , Air Pollutants/analysis , Air Pollution/analysis , Environmental Monitoring , Particle Size , Particulate Matter/analysis , Republic of Korea
11.
Article in English | MEDLINE | ID: mdl-32664192

ABSTRACT

Here, we develop a dry eye syndrome (DES) incidence rate prediction model using air pollutants (PM10, NO2, SO2, O3, and CO), meteorological factors (temperature, humidity, and wind speed), population rate, and clinical data for South Korea. The prediction model is well fitted to the incidence rate (R2 = 0.9443 and 0.9388, p < 2.2 × 10-16). To analyze regional deviations, we classify outpatient data, air pollutant, and meteorological factors in 16 administrative districts (seven metropolitan areas and nine states). Our results confirm NO2 and relative humidity are the factors impacting regional deviations in the prediction model.


Subject(s)
Air Pollutants , Air Pollution , Dry Eye Syndromes , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution/adverse effects , Air Pollution/analysis , China , Dry Eye Syndromes/epidemiology , Humans , Incidence , Meteorological Concepts , Particulate Matter/analysis , Republic of Korea/epidemiology
12.
Environ Res ; 188: 109630, 2020 09.
Article in English | MEDLINE | ID: mdl-32521308

ABSTRACT

Hydrogen production from water was investigated by applying liquid plasma (LPP) to photocatalytic splitting of water. The optical properties of LPP due to water emission were also evaluated. The correlation between the optical properties of plasma and the formation of active species in water was investigated with the photocatalytic activity of hydrogen production. TiO2 was also doped with Ag to evaluate the effect of enhancing photocatalytic activity. The photocatalytic activity was evaluated by the rate of hydrogen production, and the effect of hydrogen formation was also investigated by injecting methanol as an additive. As a result of examining the luminescence properties of LPP, it showed high luminescence in the 309 nm UV region and the 656 nm visible region. The hydrogen doping rate was increased in the Ag-doped TiO2 photocatalyst. Ag-doped TiO2 has wider light absorption into the visible region and narrower band gap. Due to these properties, the rate of hydrogen generation is superior to TiO2 photocatalysts. The photochemical reaction with LPP and photocatalyst in aqueous solution with CH3OH showed a significant increase in hydrogen production rate. The increase in hydrogen production by injection of additives is because the optical properties of generating OH radicals are improved and CH3OH is decomposed to act as an electron donor to improve hydrogen production.


Subject(s)
Silver , Water , Catalysis , Hydrogen , Titanium
13.
Article in English | MEDLINE | ID: mdl-32344779

ABSTRACT

Ambient particulate matter (PM), a major component of air pollution, aggravates ocular discomfort and inflammation, similarly to dry eye disease (DED) or allergies. However, the mechanism(s) by which PM induces the ocular inflammatory response is unknown. This study investigated the immunological response of traffic-related fine particulate matter (PM2.5) on the ocular surface in a murine model. C57BL/6 mice were exposed by topical application to PM2.5 or vehicle for 14 days to induce experimental environmental ocular disease. Corneal fluorescein staining and the number of ocular inflammatory cells were assessed in both groups. The expression of IL-1ß, IL-6, tumor necrosis factor (TNF)-α, and mucin 5AC (MUC5AC) in the ocular surface were evaluated by real-time PCR. An immunohistochemical assay evaluated apoptosis and goblet cell density. ELISA was used to determine the levels of serum IgE and cytokines of Type 1 helper (Th1) and Type 2 helper (Th2) cells after in vitro stimulation of T cells in the draining lymph nodes (LNs). Exposure to traffic-related PM2.5 significantly increased corneal fluorescein staining and cellular toxicity in the corneal epithelium compared with the vehicle control. A significant increase in the number of CD11b+ cells on the central cornea and mast cells in the conjunctiva was observed in the PM2.5 group. Exposure to PM2.5 was associated with a significant increase in the corneal or conjunctival expression of IL-1ß, IL-6, TNF, and MUC5AC compared to the vehicle, and increased maturation of dendric cells (DCs) (MHC-IIhighCD11c+) in draining LNs. In addition, PM2.5 exposure increased the level of serum IgE and Th2 cytokine production in draining LNs on day 14. In conclusion, exposure to traffic-related PM2.5 caused ocular surface damage and inflammation, which induced DC maturation and the Th2-cell-dominant allergic immune response in draining LNs.


Subject(s)
Cytokines , Dry Eye Syndromes , Eye , Particulate Matter , Animals , Cytokines/metabolism , Disease Models, Animal , Dry Eye Syndromes/chemically induced , Dry Eye Syndromes/immunology , Eye/immunology , Male , Mice , Mice, Inbred C57BL , Particulate Matter/toxicity
14.
J Hazard Mater ; 383: 121186, 2020 02 05.
Article in English | MEDLINE | ID: mdl-31525687

ABSTRACT

This study investigates a new air-washing cleaning system that directly injects compressed air on the filter surface for filter regeneration in a fabric filter (FF) dust collector. A pilot-scale FF is designed to test the new system and to compare it with the conventional pulse-jet cleaning system with regard to filter clogging by fume particles. A pleated filter with a filtration area of 2.4 m2 is installed in the FF and a thermal steel spraying gun is used to supply the fume particles. Pressure drop and particle emission concentration are monitored to examine the effect of the new system on filter regeneration and collection efficiency. The results show that the air-washing cleaning is effective for filter regeneration, as it allows the FF to operate stably for a long time, whereas the pulse-jet cleaning fails to achieve filter regeneration, resulting in a continuously increasing pressure drop. In addition, air-washing cleaning shows better performance on collection efficiency than the pulse-jet cleaning method, as it reduces the outlet particulate matter concentration to less than half that of the pulse-jet cleaning.

15.
J Vis Exp ; (145)2019 03 18.
Article in English | MEDLINE | ID: mdl-30933055

ABSTRACT

Using a numerical analysis based on computerized fluid dynamics, a nose-only inhalation toxicity chamber with four different exposure concentrations is designed and validated for flow field uniformity and cross-contamination among the exposure ports for each concentration. The designed flow field values are compared with the measured values from exposure ports located horizontally and vertically. For this purpose, nanoscale sodium chloride particles are generated as test particles and introduced to the inhalation chamber to evaluate the cross-contamination and concentration maintenance among the chambers, for each concentration group. The results indicate that the designed multiconcentration inhalation chamber can be used in animal inhalation toxicity testing without cross-contamination among concentration groups. Moreover, the designed multiconcentration inhalation toxicity chamber can also be converted to a single-concentration inhalation chamber. Further testing with gas, organic vapor, or non-nanoscale particles will ensure the use of the chamber in the inhalation testing of other test articles.


Subject(s)
Inhalation Exposure , Nose/physiology , Particle Size , Toxicity Tests/methods , Administration, Inhalation , Animals , Nanoparticles/chemistry , Rheology
16.
Environ Res ; 173: 549-555, 2019 06.
Article in English | MEDLINE | ID: mdl-31004909

ABSTRACT

For water electrolysis, a rare earth material (eg., platinum) is often used as an electrode, but because of the high cost and toxicity of chemicals, researchers are searching for cost effective and eco-friendly alternative materials. Various alloys and metals have been long explored for use as electrode materials in different media. Stainless steel (SS 304) electrodes are cost effective and have a large surface area; further their catalytic performance is comparable to that of carbon coated noble metals cathodes. Stainless steel has good mechanical properties and durability so it is widely used in desalination plants, oil and gas industries, ship building, etc. However, over a period of time it corrodes very quickly in saline water. To improve the stability and durability of the electrodes (i.e., to minimize corrosion), we anneal the samples under two different sets of conditions and test the electrodes in 3.5% NaCl solution. The anodic peak (-0.25 V) observed for bare stainless steel result from the formation of iron (II) hydroxide [Fe(OH)2]. The Raman bands observed at 210 and 274 cm-1 for bare stainless steel result from the formation of α-Fe2O3 owing to partial, anodic, and cathodic reactions occurring on the electrode which disrupts the surface layers. High intensity X-ray diffraction (XRD) and Raman peaks of Cr2O3 and MnCr2O4 observed in argon and hydrogen annealed sample after cyclic voltammetry reveal that this sample is more stable than bare and air annealed samples. XRD reveals mixed oxide phases in addition to eskolaite and magnetite phases. Scanning electron microscope (SEM) images show that although the air-annealed sample has a soft, spongy structure, Na and Cl ions are adsorbed in the voids on the outer surface of the electrode leading to quick degradation. For the air-annealed sample the oxide appears to adhere poorly to the stainless steel. Oxygen (ie., oxide composition) may play a key role in adherence and growth of Cr2O3 formed at high temperature. X-ray photoelectron spectroscopy (XPS) reveals that large amounts of Cr and Mn are dissolved/corroded into the electrolyte for air annealed sample which is in good agreement with the Raman and SEM results.


Subject(s)
Seawater , Stainless Steel , Catalysis , Corrosion , Electrodes
17.
J Environ Manage ; 236: 75-80, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30716693

ABSTRACT

Particulate matter (PM) from cooking is considered one of the most harmful indoor air pollutants causing numerous adverse health effects, and it is essential to comprehend the characteristics of the particles generated from cooking to prevent these problems. In this study, we investigated PM from the pan-frying of salmon using number concentration and developed emission rates as a function of time for ultrafine particles (UFPs < 100 nm) and accumulation mode particles (AMPs 0.1-1 µm). The newly defined emission rates vary significantly with time and are very different from the conventionally determined rates that do not consider the variation of particle concentration with time. The emission rate of UFPs decreased over time after a sharp rise, whereas that of AMPs continued to increase, resulting in a change in the proportions of UFPs and AMPs in the total PM from 93 to 7% to 72 and 28%, respectively. Particle-particle interactions such as coagulation and coalescence were observed between primary particles via high resolution transmission electron microscopy (HR-TEM), which is a plausible reason for the decreasing emission rate of UFPs with time. The emission rate as a function of time can serve as a tool to estimate PM from cooking, as well as to monitor the change trends through phenomena such as agglomeration.


Subject(s)
Air Pollutants , Environmental Monitoring , Animals , Cooking , Particle Size , Particulate Matter
18.
RSC Adv ; 9(34): 19606-19612, 2019 Jun 19.
Article in English | MEDLINE | ID: mdl-35519372

ABSTRACT

This study examined the emissions of nanoparticles and hazardous air pollutants (HAPs) by 3D printer operations and evaluated nanoparticle deposition behavior using a prediction model. Nanoparticles and HAPs were sampled at the Inha University 3D printing center with five fused filament fabrication (FFF)-type 3D printers. The number size distribution of the nanoparticles exhibited a bimodal distribution with dominant peaks over a large size range between 70 and 100 nm and a smaller size range between 10 and 20 nm. With increasing 3D printer operation, the number concentration of 10 nm particles increased, and the final number concentration was 3.6 times higher than that of the background concentration. Nanoparticle formation and agglomeration were characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Model calculations revealed that a large number of nanoparticles between 10 and 30 nm in size are deposited in the lower human respiratory tract (generation number: 16-22). A total of 14 HAPs species were detected, among which hexane, acrylonitrile, and benzene concentrations were the highest.

19.
J Environ Manage ; 232: 330-335, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30496962

ABSTRACT

Acetaldehyde removal tests were performed to compare the catalytic activity of the Kraft lignin char (KC), KOH-treated Kraft lignin char (KKC), and activated carbon (AC) along with their impregnation with Mn in a plasma reactor. The gasification characteristics (syngas content, and H2/CO ratio) of yellow poplar were investigated using nickel catalysts supported on KC, KKC, AC, and γ-Al2O3 in a U-type quartz reactor. KKC and Mn/KKC improved significantly the surface area and contents of O and N functional groups over the raw char. In particular, Mn/KKC showed the highest acetaldehyde-removal efficiency. The catalytic activity of Ni-impregnated KC, KKC, AC, and γ-Al2O3 decreased in the order of Ni/KKC > Ni/AC > Ni/KC > Ni/γ-Al2O3 for the gas yield and Ni/γ-Al2O3 >Ni/KC > Ni/AC >Ni/KKC for the oil yield, respectively. The Ni/KKC provides a more conducive environment for gasification, resulting in larger amounts of syngas (H2 and CO) in the product gases. Moreover, Ni impregnated with char may be the most inexpensive and effective solution for achieving maximum tar reduction and syngas generation.


Subject(s)
Acetaldehyde , Gases , Biomass , Catalysis , Lignin , Metals
20.
J Nanosci Nanotechnol ; 19(2): 1133-1136, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30360217

ABSTRACT

Ni/spent FCC catalyst was applied as the catalyst on the catalytic pyrolysis and gasification of yellow poplar (YP). Larger amount of gas (CO, CO2, H2, C1~C4) was produced by applying Ni/spent FCC catalyst to the catalytic pyrolysis and gasification of YP. Ni/spent FCC catalyst also increased the selectivity of phenols and aromatic hydrocarbons in oil product during the pyrolysis and gasification of YP. Overall catalytic performance of Ni/spent FCC catalyst was similar level with that of Ni/γ-Al2O3, suggesting its potential use.

SELECTION OF CITATIONS
SEARCH DETAIL
...