Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Am J Cancer Res ; 14(2): 727-743, 2024.
Article in English | MEDLINE | ID: mdl-38455399

ABSTRACT

Hypoxia-inducible factors (HIFs) regulate cellular oxygen balance and play a central role in cancer metastasis and angiogenesis. Despite extensive research on HIFs, successful therapeutic strategies remain limited due to the intricate nature of their regulation. In this study, we identified SPATA20, a relatively understudied protein with a thioredoxin-like domain, as an upstream regulator of HIF-1α. Depleting SPATA20 induced HIF-1α expression, suggesting a tumor-suppressive role for SPATA20 in cancer cells. SPATA20 depletion increased HIF-1α protein levels and transcriptional activity without affecting its degradation. It appears that SPATA20 inhibits the de novo synthesis of HIF-1α, possibly by repressing the cap-dependent translation process involving AKT phosphorylation. Additionally, depletion of SPATA20 promoted cancer cell migration and invasion, which can be reversed by pharmacological inhibition of HIF-1α. Clinical data analysis revealed an inverse correlation between SPATA20 expression and colorectal cancer progression, providing evidence of its role as a potential biomarker. Utilizing SPATA20 as an indicator for HIF-1α-targeting therapy may be an attractive strategy for treating patients with hypoxia-driven cancers. In conclusion, this study demonstrates that SPATA20 deficiency promotes cancer progression by activating the HIF-1α signaling pathway.

2.
J Nanobiotechnology ; 21(1): 365, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37798714

ABSTRACT

Photothermal therapy (PTT) is a novel cancer treatment using a photoabsorber to cause hyperthermia to kill tumors by laser irradiation. Prussian blue nanoparticles (PB NPs) are considered as next-generation photothermal agents due to the facile synthesis and excellent absorption of near-infrared light. Although PB NPs demonstrate remarkable PTT capabilities, their clinical application is limited due to their systemic toxicity. Bacterial cellulose (BC) has been applied to various bio-applications based on its unique properties and biocompatibility. Herein, we design composites with PB NPs and BC as an injectable, highly biocompatible PTT agent (IBC-PB composites). Injectable bacterial cellulose (IBC) is produced through the trituration of BC, with PB NPs synthesized on the IBC surface to prepare IBC-PB composites. IBC-PB composites show in vitro and in vivo photothermal therapeutic effects similar to those of PB NPs but with significantly greater biocompatibility. Specifically, in vitro therapeutic index of IBC-PB composites is 26.5-fold higher than that of PB NPs. Furthermore, unlike PB NPs, IBC-PB composites exhibit no overt toxicity in mice as assessed by blood biochemical analysis and histological images. Hence, it is worth pursuing further research and development of IBC-PB composites as they hold promise as safe and efficacious PTT agents for clinical application.


Subject(s)
Nanocomposites , Nanoparticles , Neoplasms , Animals , Mice , Photothermal Therapy , Nanoparticles/chemistry , Phototherapy , Nanocomposites/therapeutic use , Nanocomposites/chemistry , Neoplasms/therapy
3.
Int J Mol Sci ; 24(5)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36901857

ABSTRACT

Skin cancer is one of the most prevalent cancers in the Caucasian population. In the United States, it is estimated that at least one in five people will develop skin cancer in their lifetime, leading to significant morbidity and a healthcare burden. Skin cancer mainly arises from cells in the epidermal layer of the skin, where oxygen is scarce. There are three main types of skin cancer: malignant melanoma, basal cell carcinoma, and squamous cell carcinoma. Accumulating evidence has revealed a critical role for hypoxia in the development and progression of these dermatologic malignancies. In this review, we discuss the role of hypoxia in treating and reconstructing skin cancers. We will summarize the molecular basis of hypoxia signaling pathways in relation to the major genetic variations of skin cancer.


Subject(s)
Carcinoma, Basal Cell , Carcinoma, Squamous Cell , Melanoma , Skin Neoplasms , Humans , United States , Skin Neoplasms/pathology , Melanoma/metabolism , Carcinoma, Basal Cell/pathology , Carcinoma, Squamous Cell/pathology , Hypoxia
4.
Med Phys ; 50(1): 529-539, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36367111

ABSTRACT

BACKGROUND: X-ray fluorescence (XRF) imaging for metal nanoparticles (MNPs) is a promising molecular imaging modality that can determine dynamic biodistributions of MNPs. However, it has the limitation that it only provides functional information. PURPOSE: In this study, we aim to show the feasibility of acquiring functional and anatomic information on the same platform by demonstrating a dual imaging modality of pinhole XRF and computed tomography (CT) for gold nanoparticle (GNP)-injected living mice. METHODS: By installing a transmission CT detector in an existing pinhole XRF imaging system using a two-dimensional (2D) cadmium zinc telluride (CZT) gamma camera, XRF and CT images were acquired on the same platform. Due to the optimal X-ray spectra for XRF and CT image acquisition being different, XRF and CT imaging were performed by 140 and 50 kV X-rays, respectively. An amount of 40 mg GNPs (1.9 nm in diameter) suspended in 0.20 ml of phosphate-buffered saline were injected into the three BALB/c mice via a tail vein. Then, the kidney and tumor slices of mice were scanned at specific time points within 60 min to acquire time-lapse in vivo biodistributions of GNPs. XRF images were directly acquired without image reconstruction using a pinhole collimator and a 2D CZT gamma camera. Subsequently, CT images were acquired by performing CT scans. In order to confirm the validity of the functional information provided by the XRF image, the CT image was fused with the XRF image. After the XRF and CT scan, the mice were euthanized, and major organs (kidneys, tumor, liver, and spleen) were extracted. The ex vivo GNP concentrations of the extracted organs were measured by inductively coupled plasma mass spectrometry (ICP-MS) and L-shell XRF detection system using a silicon drift detector, then compared with the in vivo GNP concentrations measured by the pinhole XRF imaging system. RESULTS: Time-lapse XRF images were directly acquired without rotation and translation of imaging objects within an acquisition time of 2 min per slice. Due to the short image acquisition time, the time-lapse in vivo biodistribution of GNPs was acquired in the organs of the mice. CT images were fused with the XRF images and successfully confirmed the validity of the XRF images. The difference in ex vivo GNP concentrations measured by the L-shell XRF detection system and ICP-MS was 0.0005-0.02% by the weight of gold (wt%). Notably, the in vivo and ex vivo GNP concentrations in the kidneys of three mice were comparable with a difference of 0.01-0.08 wt%. CONCLUSIONS: A dual imaging modality of pinhole XRF and CT imaging system and L-shell XRF detection system were successfully developed. The developed systems are a promising modality for in vivo imaging and ex vivo quantification for preclinical studies using MNPs. In addition, we discussed further improvements for the routine preclinical applications of the systems.


Subject(s)
Metal Nanoparticles , Neoplasms , Animals , Mice , X-Rays , Gold/chemistry , Metal Nanoparticles/chemistry , Tissue Distribution , Phantoms, Imaging
5.
ACS Appl Bio Mater ; 5(6): 2862-2869, 2022 06 20.
Article in English | MEDLINE | ID: mdl-35561258

ABSTRACT

Extracellular vesicles (EVs) have been found to be effective therapeutic drug delivery vehicles in a wide range of human diseases, including cancer and neurodegenerative diseases. Proinflammatory (M1) macrophages can modulate the suppressive immune environment of tumor tissues to be more inflammatory and have been considered as candidates for cancer immunotherapy. Furthermore, macrophage-derived exosome-mimetic nanovesicles (MNVs) could effectively induce antitumor response and enhance the efficacy of immune checkpoint inhibitors in a recent paper. However, multiple studies indicate that EVs were rapidly cleared by the reticuloendothelial system, and therefore, their tumor targeting efficiencies were limited. Herein, we developed a simple surface modification method of MNVs using polyethylene glycol (PEG) to enhance the in vivo tumor targeting efficiency. PEG-MNVs had 7-fold higher blood circulation than bare MNVs in the animal tumor model. Also, MNVs had a 25-fold higher protein amount than exosomes. Overall, the nanovesicle preparation strategies presented in this study may expedite the clinical translation of EV-based therapeutics in various diseases.


Subject(s)
Exosomes , Extracellular Vesicles , Neoplasms , Animals , Drug Delivery Systems , Exosomes/metabolism , Extracellular Vesicles/metabolism , Macrophages/metabolism , Neoplasms/drug therapy , Polyethylene Glycols/pharmacology
6.
J Nanobiotechnology ; 19(1): 262, 2021 Sep 04.
Article in English | MEDLINE | ID: mdl-34481489

ABSTRACT

BACKGROUND: Photothermal therapy (PTT) is an emerging anti-cancer therapeutic strategy that generates hyperthermia to ablate cancer cells under laser irradiation. Gold (Au) coated liposome (AL) was reported as an effective PTT agent with good biocompatibility and excretory property. However, exposed Au components on liposomes can cause instability in vivo and difficulty in further functionalization. RESULTS: Herein, we developed a theranostic dual-layered nanomaterial by adding liposomal layer to AL (LAL), followed by attaching polyethylene glycol (PEG) and radiolabeling. Functionalization with PEG improves the in vivo stability of LAL, and radioisotope labeling enables in vivo imaging of LAL. Functionalized LAL is stable in physiological conditions, and 64Cu labeled LAL (64Cu-LAL) shows a sufficient blood circulation property and an effective tumor targeting ability of 16.4%ID g-1 from in vivo positron emission tomography (PET) imaging. Also, intravenously injected LAL shows higher tumor targeting, temperature elevation in vivo, and better PTT effect in orthotopic breast cancer mouse model compared to AL. The tumor growth inhibition rate of LAL was 3.9-fold higher than AL. CONCLUSION: Based on these high stability, in vivo imaging ability, and tumor targeting efficiency, LAL could be a promising theranostic PTT agent.


Subject(s)
Drug Delivery Systems , Liposomes/pharmacology , Nanostructures , Photothermal Therapy/methods , Precision Medicine/methods , Animals , Cell Line, Tumor , Cell Survival/drug effects , Female , Gold/pharmacology , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasms/drug therapy , Polyethylene Glycols , Positron-Emission Tomography , Theranostic Nanomedicine/methods
7.
Nucl Med Biol ; 90-91: 98-103, 2020.
Article in English | MEDLINE | ID: mdl-33189950

ABSTRACT

INTRODUCTION: Currently, the reference method of brown adipose tissue (BAT) imaging is 18F-fluorodeoxyglucose positron emission tomography ([18F]FDG PET). BAT imaging by [18F]FDG PET requires additional stimulation process, which is inconvenient and hard to be standardized. The translocator protein 18 kDa (TSPO) PET has been found to be effective for visualization of BAT. Herein, we evaluated the feasibility of [18F]fluoromethyl-PBR28-d2 ([18F]fmPBR28-d2), a TSPO PET tracer, for interscapular BAT imaging in comparison with [18F]FDG PET. METHODS: C57BL/6 mice were used for the [18F]fmPBR28-d2 and [18F]FDG PET imaging. [18F]fmPBR28-d2 PET was performed in the thermoneutral condition (n = 5) and after cold exposure (4 °C for 4 h) on the next day using the same mice. [18F]FDG PET was performed in the thermoneutral and cold exposure conditions with the same method with [18F]fmPBR28-d2 PET. Ex vivo biodistribution study of [18F]fmPBR28-d2 was performed in ten C57BL/6 mice (5: thermoneutral, 5: cold exposure). TSPO immunohistochemistry was done in interscapular BAT. RESULTS: The [18F]fmPBR28-d2 PET images showed prominent interscapular BAT uptakes under both thermoneutral and cold exposure conditions. While, the BAT uptake was significantly higher under the cold exposure condition than the thermoneutral condition (12.83 ± 5.06 vs. 22.50 ± 6.03, P = 0.007). Also, [18F]FDG PET imaging showed higher BAT uptake under the cold exposure condition than thermoneutral condition (8.40 ± 0.63 vs. 21.41 ± 4.03, P = 0.001). The interscapular BAT to background (thigh muscle) ratio was higher in [18F]fmPBR28-d2 PET than [18F]FDG PET under both thermoneutral and cold exposure conditions. Ex vivo biodistribution study using [18F]fmPBR28-d2 also showed higher BAT uptake under cold exposure than the thermoneutral condition (8.86 ± 1.74 vs.16.93 ± 4.74, P = 0.036). Also, IHC demonstrated that TSPO expression was significantly increased in the cold exposure group. CONCLUSIONS: [18F]FmPBR28-d2 PET demonstrated prominent interscapular BAT uptakes regardless of additional stimulation, and showed a higher BAT to background ratio than [18F]FDG PET. Also, we found that [18F]fmPBR28-d2 PET uptake and TSPO expression of BAT increased under cold exposure condition. Further works are warranted to assess the clinical significance of TSPO PET uptake in BAT.


Subject(s)
Acetamides/chemistry , Adipose Tissue, Brown/diagnostic imaging , Aminopyridines/chemistry , Fluorodeoxyglucose F18 , Positron-Emission Tomography/methods , Receptors, GABA/metabolism , Acetamides/pharmacokinetics , Aminopyridines/pharmacokinetics , Animals , Male , Mice , Mice, Inbred C57BL , Radioactive Tracers , Tissue Distribution
8.
Cancers (Basel) ; 12(10)2020 Oct 09.
Article in English | MEDLINE | ID: mdl-33050333

ABSTRACT

Dexamethasone (DEX), a synthetic glucocorticoid, is commonly used as immunosuppressive and chemotherapeutic agent. This study was undertaken to investigate the effects of DEX on the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in cancer cells. We found that upregulation of c-FLIP(L) and downregulation of death receptor 5 (DR5; receptor for TRAIL ligand) contribute to the anti-apoptotic effect of DEX on TRAIL-induced apoptosis. DEX increased c-FLIP(L) expression at the transcriptional levels through the GSK-3ß signaling pathway. The pharmacological inhibitor and catalytic mutant of GSK-3ß suppressed DEX-induced upregulation of c-FLIP(L) expression. Furthermore, GSK-3ß specific inhibitor markedly abolished DEX-mediated reduction of TRAIL-induced apoptosis in human renal cancer cells (Caki-1 and A498), human lung cancer cells (A549), and human breast cancer cells (MDA-MB361). In addition, DEX decreased protein stability of DR5 via GSK-3ß-mediated upregulation of Cbl, an E3 ligase of DR5. Knockdown of Cbl by siRNA markedly inhibited DEX-induced DR5 downregulation. Taken together, these results suggest that DEX inhibits TRAIL-mediated apoptosis via GSK-3ß-mediated DR5 downregulation and c-FLIP(L) upregulation in cancer cells.

9.
ACS Nano ; 14(10): 13004-13015, 2020 10 27.
Article in English | MEDLINE | ID: mdl-32820903

ABSTRACT

Photodynamic therapy (PDT) is an effective anticancer strategy with a higher selectivity and fewer adverse effects than conventional therapies; however, shallow tissue penetration depth of light has hampered the clinical utility of PDT. Recently, reports have indicated that Cerenkov luminescence-induced PDT may overcome the tissue penetration limitation of conventional PDT. However, the effectiveness of this method is controversial because of its low luminescence intensity. Herein, we developed a radiolabeled diethylenetriaminepentaacetic acid chelated Eu3+ (Eu-DTPA)/photosensitizer (PS) loaded liposome (Eu/PS-lipo) that utilizes ionizing radiation from radioisotopes for effective in vivo imaging and radioluminescence-induced PDT. We utilized Victoria blue-BO (VBBO) as a PS and observed an efficient luminescence resonance energy transfer between Eu-DTPA and VBBO. Furthermore, 64Cu-labeled Eu lipo demonstrated a strong radioluminescence with a 2-fold higher intensity than Cerenkov luminescence from free 64Cu. In our radioluminescence liposome, radioluminescence energy transfer showed a 6-fold higher energy transfer efficiency to VBBO than Cerenkov luminescence energy transfer (CLET). 64Cu-labeled Eu/VBBO lipo (64Cu-Eu/VBBO lipo) showed a substantial tumor uptake of up to 19.3%ID/g by enhanced permeability and retention effects, as revealed by in vivo positron emission tomography. Finally, the PDT using 64Cu-Eu/VBBO lipo demonstrated significantly higher in vitro and in vivo therapeutic effects than Cerenkov luminescence-induced PDT using 64Cu-VBBO lipo. This study envisions a great opportunity for clinical PDT application by establishing the radioluminescence liposome which has high tumor targeting and efficient energy transfer capability from radioisotopes.


Subject(s)
Photochemotherapy , Europium , Liposomes , Luminescence , Pentetic Acid , Radioisotopes
10.
Immunopharmacol Immunotoxicol ; 42(2): 74-83, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32041439

ABSTRACT

Objectives: Sulforaphane, a major ingredient isolated from Brassica oleracea var. italica (broccoli), is known to exhibit anti-inflammatory, anti-cancer, and anti-diabetic effects. In this study, we employed an in vitro model of phorbol 12-myristate 13-acetate and a23187 (PMACI)-stimulated human mast cells (HMC-1 cells) to investigate the anti-allergic inflammatory effects and mechanisms of sulforaphane and Brassica oleracea var. italica extracts.Methods: Cytokine levels were measured by ELISA and quantitative real-time-PCR methods. Caspase-1 activity was determined by caspase-1 assay. Binding mode of sulforaphane within caspase-1 was determined by molecular docking simulation. Protein expression was determined by Western blotting.Results: Water extract of Brassica oleracea var. italica (WE) significantly reduced thymic stromal lymphopoietin (TSLP) secretion and caspase-1 activity on activated HMC-1 cells. In the molecular docking simulation and in vitro caspase-1 assays, sulforaphane regulated caspase-1 activity by docking with the identical binding site of caspase-1. Sulforaphane significantly inhibited the levels of inflammatory mediators including TSLP, tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-6, and IL-8 in a dose-dependent manner. Immunoblotting experiments revealed that sulforaphane and WE reduced translocation of NF-κBp65 into the nucleus and phosphorylation of IκBα in the cytosol. Furthermore, phosphorylation of mitogen-activated protein kinases (MAPK) was down-regulated by treatment with sulforaphane or WE.Conclusion: Our findings suggest that sulforaphane and WE have anti-allergic inflammatory effects by intercepting caspase-1/NF-κB/MAPKs signaling pathways.


Subject(s)
Anti-Allergic Agents/pharmacology , Brassica/chemistry , Isothiocyanates/pharmacology , Mast Cells/drug effects , Plant Extracts/pharmacology , Anti-Allergic Agents/isolation & purification , Caspase 1/metabolism , Cell Line , Computer Simulation , Humans , Interleukins/metabolism , Isothiocyanates/isolation & purification , MAP Kinase Signaling System/drug effects , Mast Cells/immunology , NF-kappa B/metabolism , Plant Extracts/isolation & purification , Sulfoxides , Tumor Necrosis Factor-alpha/metabolism
11.
Biochimie ; 165: 108-114, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31336136

ABSTRACT

Oridonin is a diterpenoid isolated from the Rabdosia rubescens and has multiple biological effects, such as anti-inflammation and anti-tumor activities. In present study, we revealed that the sensitizing effect of oridonin on tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in several cancer cells, but not in normal cells. Oridonin enhanced death-signaling inducing complexes (DISC) formation and DR5 glycosylation without affecting expression of downstream intracellular apoptosis-related proteins. Oridonin upregulated peptidyl O-glycosyltransferase GALNT14 in a dose- and time-dependent manner. Knockdown of GALNT14 by siRNA and Endo H treatment reduced oridonin-induced DR5 glycosylation. Furthermore, treatment with inhibitor of glycosylation (benzyl-α-GalNAc) blocked oridonin plus TRAIL-induced apoptosis. Collectively, our results suggest that oridonin-induced DR5 glycosylation contributes to TRAIL-induced apoptotic cell death in cancer cells.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Apoptosis/drug effects , Diterpenes, Kaurane/pharmacology , N-Acetylgalactosaminyltransferases/metabolism , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , TNF-Related Apoptosis-Inducing Ligand/physiology , Cell Line , Glycosylation , Humans , TNF-Related Apoptosis-Inducing Ligand/pharmacology
12.
Molecules ; 23(11)2018 Nov 20.
Article in English | MEDLINE | ID: mdl-30463333

ABSTRACT

Maritoclax, an active constituent isolated from marine bacteria, has been known to induce Mcl-1 downregulation through proteasomal degradation. In this study, we investigated the sensitizing effect of maritoclax on tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in human renal carcinoma cells. We found that combined treatment with maritoclax and TRAIL markedly induced apoptosis in renal carcinoma (Caki, ACHN and A498), lung cancer (A549) and hepatocellular carcinoma (SK-Hep1) cells. The upregulation of death receptor 5 (DR5) and downregulation of cellular FLICE-inhibitory protein (cFLIP) were involved in maritoclax plus TRAIL-induced apoptosis. Maritoclax-induced DR5 upregulation was regulated by induction of C/EBP homologous protein (CHOP) expression. Interestingly, maritoclax induced cFLIP downregulation through the increased expression of miR-708. Ectopic expression of cFLIP prevented combined maritoclax and TRAIL-induced apoptosis. Taken together, maritoclax sensitized TRAIL-induced apoptosis through CHOP-mediated DR5 upregulation and miR-708-mediated cFLIP downregulation.


Subject(s)
MicroRNAs/genetics , Neoplasms/metabolism , Pyrroles/pharmacology , TNF-Related Apoptosis-Inducing Ligand/pharmacology , Transcription Factor CHOP/metabolism , A549 Cells , Apoptosis , CASP8 and FADD-Like Apoptosis Regulating Protein/genetics , Cell Line, Tumor , Cell Survival/drug effects , Down-Regulation , Drug Synergism , Gene Expression Regulation, Neoplastic/drug effects , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Receptors, TNF-Related Apoptosis-Inducing Ligand/genetics , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , Transcription Factor CHOP/genetics , Up-Regulation
13.
Int J Mol Sci ; 18(12)2017 Nov 29.
Article in English | MEDLINE | ID: mdl-29186071

ABSTRACT

Polo-like kinase 1 (PLK1) plays major roles in cell cycle control and DNA damage response. Therefore, PLK1 has been investigated as a target for cancer therapy. Volasertib is the second-in class dihydropteridinone derivate that is a specific PLK1 inhibitor. In this study, we examined that combining PLK1 inhibitor with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) would have an additive and synergistic effect on induction of apoptosis in cancer cells. We found that volasertib alone and TRAIL alone had no effect on apoptosis, but the combined treatment of volasertib and TRAIL markedly induced apoptosis in Caki (renal carcinoma), A498 (renal carcinoma) and A549 (lung carcinoma) cells, but not in normal cells (human skin fibroblast cells and mesangial cells). Combined treatment induced accumulation of sub-G1 phase, DNA fragmentation, cleavage of poly (ADP-ribose) polymerase (PARP) and activation of caspase 3 activity in Caki cells. Interestingly, combined treatment induced downregulation of cellular-FLICE-inhibitory protein (c-FLIP) expression and ectopic expression of c-FLIP markedly blocked combined treatment-induced apoptosis. Therefore, this study demonstrates that volasertib may sensitize TRAIL-induced apoptosis in Caki cells via downregulation of c-FLIP.


Subject(s)
CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism , Carcinoma, Renal Cell/metabolism , Kidney Neoplasms/metabolism , Pteridines/pharmacology , TNF-Related Apoptosis-Inducing Ligand/metabolism , Apoptosis/drug effects , Blotting, Western , Cell Line, Tumor , Flow Cytometry , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...