Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Psychiatry Res Neuroimaging ; 332: 111640, 2023 07.
Article in English | MEDLINE | ID: mdl-37121089

ABSTRACT

To investigate the role of glutamate in psychosis, we employ functional magnetic resonance spectroscopy at an ultra-high magnetic field (7T) and employ fuzzy-approximate entropy (F-ApEn) and Hurst Exponent (HE) to capture time-varying nature of glutamate signaling during a cognitive task. We recruited thirty first-episode psychosis patients (FEP) with age- and gender-matched healthy controls (HC) and administered the Color-Word Stroop paradigm, providing 128 raw MRS time-points per subject over a period of 16 min. We then performed metabolite quantification of glutamate in the dorsal anterior cingulate cortex, a region reliably activated during the Stroop task. Symptoms/cognitive functioning was measured using Positive and Negative Syndrome Scale-8 score, Social and Occupational Functioning (SOFAS) score, digit symbol) coding score, and Stroop accuracy. These scores were related to the Entropy/HE data from the overall glutamate time-series. Patients with FEP had significantly higher HE compared to HC, with individuals displaying significantly higher HE having lower functional performance (SOFAS) in both HC and FEP groups. Among healthy individuals, higher HE also indicated significantly lower cognitive function through Stroop accuracy and DSST scores. F-ApEn had an inverse Pearson correlation with HE, and tracked diagnosis, cognition and function as expected, but with lower effect sizes not reaching statistical significance. We demonstrate notable diagnostic differences in the temporal course of glutamate signaling during a cognitive task in psychosis.


Subject(s)
Psychotic Disorders , Schizophrenia , Humans , Schizophrenia/diagnostic imaging , Glutamic Acid/metabolism , Psychotic Disorders/psychology , Magnetic Resonance Spectroscopy , Cognition
2.
Mol Psychiatry ; 28(5): 2039-2048, 2023 05.
Article in English | MEDLINE | ID: mdl-36806762

ABSTRACT

Glutamatergic dysfunction is implicated in schizophrenia pathoaetiology, but this may vary in extent between patients. It is unclear whether inter-individual variability in glutamate is greater in schizophrenia than the general population. We conducted meta-analyses to assess (1) variability of glutamate measures in patients relative to controls (log coefficient of variation ratio: CVR); (2) standardised mean differences (SMD) using Hedges g; (3) modal distribution of individual-level glutamate data (Hartigan's unimodality dip test). MEDLINE and EMBASE databases were searched from inception to September 2022 for proton magnetic resonance spectroscopy (1H-MRS) studies reporting glutamate, glutamine or Glx in schizophrenia. 123 studies reporting on 8256 patients and 7532 controls were included. Compared with controls, patients demonstrated greater variability in glutamatergic metabolites in the medial frontal cortex (MFC, glutamate: CVR = 0.15, p < 0.001; glutamine: CVR = 0.15, p = 0.003; Glx: CVR = 0.11, p = 0.002), dorsolateral prefrontal cortex (glutamine: CVR = 0.14, p = 0.05; Glx: CVR = 0.25, p < 0.001) and thalamus (glutamate: CVR = 0.16, p = 0.008; Glx: CVR = 0.19, p = 0.008). Studies in younger, more symptomatic patients were associated with greater variability in the basal ganglia (BG glutamate with age: z = -0.03, p = 0.003, symptoms: z = 0.007, p = 0.02) and temporal lobe (glutamate with age: z = -0.03, p = 0.02), while studies with older, more symptomatic patients associated with greater variability in MFC (glutamate with age: z = 0.01, p = 0.02, glutamine with symptoms: z = 0.01, p = 0.02). For individual patient data, most studies showed a unimodal distribution of glutamatergic metabolites. Meta-analysis of mean differences found lower MFC glutamate (g = -0.15, p = 0.03), higher thalamic glutamine (g = 0.53, p < 0.001) and higher BG Glx in patients relative to controls (g = 0.28, p < 0.001). Proportion of males was negatively associated with MFC glutamate (z = -0.02, p < 0.001) and frontal white matter Glx (z = -0.03, p = 0.02) in patients relative to controls. Patient PANSS total score was positively associated with glutamate SMD in BG (z = 0.01, p = 0.01) and temporal lobe (z = 0.05, p = 0.008). Further research into the mechanisms underlying greater glutamatergic metabolite variability in schizophrenia and their clinical consequences may inform the identification of patient subgroups for future treatment strategies.


Subject(s)
Glutamic Acid , Schizophrenia , Male , Humans , Glutamic Acid/metabolism , Schizophrenia/metabolism , Glutamine/metabolism , Brain/metabolism , Proton Magnetic Resonance Spectroscopy
3.
Transl Psychiatry ; 12(1): 358, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36050318

ABSTRACT

Cholinergic dysfunction has been implicated in the pathophysiology of psychosis and psychiatric disorders such as schizophrenia, depression, and bipolar disorder. The basal forebrain (BF) cholinergic nuclei, defined as cholinergic cell groups Ch1-3 and Ch4 (Nucleus Basalis of Meynert; NBM), provide extensive cholinergic projections to the rest of the brain. Here, we examined microstructural neuroimaging measures of the cholinergic nuclei in patients with untreated psychosis (~31 weeks of psychosis, <2 defined daily dose of antipsychotics) and used magnetic resonance spectroscopy (MRS) and transcriptomic data to support our findings. We used a cytoarchitectonic atlas of the BF to map the nuclei and obtained measures of myelin (quantitative T1, or qT1 as myelin surrogate) and microstructure (axial diffusion; AxD). In a clinical sample (n = 85; 29 healthy controls, 56 first-episode psychosis), we found significant correlations between qT1 of Ch1-3, left NBM and MRS-based dorsal anterior cingulate choline in healthy controls while this relationship was disrupted in FEP (p > 0.05). Case-control differences in qT1 and AxD were observed in the Ch1-3, with increased qT1 (reflecting reduced myelin content) and AxD (reflecting reduced axonal integrity). We found clinical correlates between left NBM qT1 with manic symptom severity, and AxD with negative symptom burden in FEP. Intracortical and subcortical myelin maps were derived and correlated with BF myelin. BF-cortical and BF-subcortical myelin correlations demonstrate known projection patterns from the BF. Using data from the Allen Human Brain Atlas, cholinergic nuclei showed significant enrichment for schizophrenia and depression-related genes. Cell-type specific enrichment indicated enrichment for cholinergic neuron markers as expected. Further relating the neuroimaging correlations to transcriptomics demonstrated links with cholinergic receptor genes and cell type markers of oligodendrocytes and cholinergic neurons, providing biological validity to the measures. These results provide genetic, neuroimaging, and clinical evidence for cholinergic dysfunction in schizophrenia.


Subject(s)
Basal Forebrain , Psychotic Disorders , Basal Forebrain/diagnostic imaging , Basal Forebrain/metabolism , Basal Nucleus of Meynert/metabolism , Basal Nucleus of Meynert/pathology , Cholinergic Agents , Humans , Psychotic Disorders/diagnostic imaging , Psychotic Disorders/genetics , Psychotic Disorders/pathology , Transcriptome
4.
Front Hum Neurosci ; 16: 954898, 2022.
Article in English | MEDLINE | ID: mdl-35992940

ABSTRACT

Introduction: Symptoms of schizophrenia are closely related to aberrant language comprehension and production. Macroscopic brain changes seen in some patients with schizophrenia are suspected to relate to impaired language production, but this is yet to be reliably characterized. Since heterogeneity in language dysfunctions, as well as brain structure, is suspected in schizophrenia, we aimed to first seek patient subgroups with different neurobiological signatures and then quantify linguistic indices that capture the symptoms of "negative formal thought disorder" (i.e., fluency, cohesion, and complexity of language production). Methods: Atlas-based cortical thickness values (obtained with a 7T MRI scanner) of 66 patients with first-episode psychosis and 36 healthy controls were analyzed with hierarchical clustering algorithms to produce neuroanatomical subtypes. We then examined the generated subtypes and investigated the quantitative differences in MRS-based glutamate levels [in the dorsal anterior cingulate cortex (dACC)] as well as in three aspects of language production features: fluency, syntactic complexity, and lexical cohesion. Results: Two neuroanatomical subtypes among patients were observed, one with near-normal cortical thickness patterns while the other with widespread cortical thinning. Compared to the subgroup of patients with relatively normal cortical thickness patterns, the subgroup with widespread cortical thinning was older, with higher glutamate concentration in dACC and produced speech with reduced mean length of T-units (complexity) and lower repeats of content words (lexical cohesion), despite being equally fluent (number of words). Conclusion: We characterized a patient subgroup with thinner cortex in first-episode psychosis. This subgroup, identifiable through macroscopic changes, is also distinguishable in terms of neurochemistry (frontal glutamate) and language behavior (complexity and cohesion of speech). This study supports the hypothesis that glutamate-mediated cortical thinning may contribute to a phenotype that is detectable using the tools of computational linguistics in schizophrenia.

5.
Stem Cell Res Ther ; 13(1): 358, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35883188

ABSTRACT

INTRODUCTION: Human mesenchymal stromal cells (MSCs) have immunomodulatory, anti-inflammatory, and tolerogenic effects. Long-term in vitro expansion of MSCs to generate clinical grade products results in the accumulation of senescent-functionally impaired MSCs. Markers to assess the 'senescent load' of MSC products are needed. METHODS: Early and late passage human adipose tissue (AT) MSCs from pediatric and adult donors were characterized using established senescent markers [i.e., MSC size, granularity, and autofluorescence by flow cytometry; ß-galactosidase staining (SA-ß-gal); CDKN2A and CDKN1A by qRT-PCR]. In gene set enrichment analysis, DPP4 (also known as adenosine deaminase complexing protein 2 or CD26) was found as a prominent dysregulated transcript that was increased in late passage MSC(AT). This was confirmed in a larger number of MSC samples by PCR, flow cytometry, Western blotting, and immunofluorescence. In vitro immunopotency assays compared the function of CD26high and CD26low MSC(AT). The effect of senolytics on the CD26high subpopulation was evaluated in senescent MSC(AT). RESULTS: Late passage MSC(AT) had a senescence transcriptome signature. DPP4 was the most differentially enriched gene in senescent MSCs. Late passage senescent MSC(AT) had higher CD26 surface levels and total protein abundance. Moreover, CD26 surface levels were higher in early passage MSC(AT) from adults compared to pediatric donors. CD26 abundance correlated with established senescence markers. CD26high MSC(AT) had reduced immunopotency compared to CD26low MSC(AT). Senolytic treatment induced MSC apoptosis, which decreased the frequencies of CD26high MSC(AT). CONCLUSIONS: DPP4 gene expression and DPP4/CD26 protein abundance are markers of replicative senescence in MSC(AT). Samples enriched in CD26high MSC(AT) have reduced immunopotency and CD26high MSCs are reduced with senolytics.


Subject(s)
Dipeptidyl Peptidase 4 , Mesenchymal Stem Cells , Adipose Tissue/metabolism , Adult , Biomarkers/metabolism , Cell Proliferation/genetics , Cells, Cultured , Cellular Senescence , Child , Dipeptidyl Peptidase 4/genetics , Dipeptidyl Peptidase 4/metabolism , Dipeptidyl Peptidase 4/pharmacology , Humans , Mesenchymal Stem Cells/metabolism
6.
Schizophr Res ; 2022 May 26.
Article in English | MEDLINE | ID: mdl-35644706

ABSTRACT

BACKGROUND: Cortical thinning is a well-known feature in schizophrenia. The considerable variation in the spatial distribution of thickness changes has been used to parse heterogeneity. A 'cortical impoverishment' subgroup with a generalized reduction in thickness has been reported. However, it is unclear if this subgroup is recoverable irrespective of illness stage, and if it relates to the glutamate hypothesis of schizophrenia. METHODS: We applied hierarchical cluster analysis to cortical thickness data from magnetic resonance imaging scans of three datasets in different stages of psychosis (n = 288; 160 patients; 128 healthy controls) and studied the cognitive and symptom profiles of the observed subgroups. In one of the samples, we also studied the subgroup differences in 7-Tesla magnetic resonance spectroscopy glutamate concentration in the dorsal anterior cingulate cortex. RESULTS: Our consensus-based clustering procedure consistently produced 2 subgroups of participants. Patients accounted for 75%-100% of participants in one subgroup that was characterized by significantly lower cortical thickness. Both subgroups were equally symptomatic in clinically unstable stages, but cortical impoverishment indicated a higher symptom burden in a clinically stable sample and higher glutamate levels in the first-episode sample. There were no subgroup differences in cognitive and functional outcome profiles or antipsychotic exposure across all stages. CONCLUSIONS: Cortical thinning does not vary with functioning or cognitive impairment, but it is more prevalent among patients, especially those with glutamate excess in early stages and higher residual symptom burden at later stages, providing an important mechanistic clue to one of the several possible pathways to the illness.

7.
Schizophr Bull ; 48(4): 921-930, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35307736

ABSTRACT

BACKGROUND AND HYPOTHESIS: Following the first episode of psychosis, some patients develop poor social and occupational outcomes, while others display a pattern of preserved functioning. Evidence from preclinical, genetic, and biochemical studies suggest a role for high oxidative stress in poor functional outcomes among patients. The measurement of intracortical glutathione (GSH) using magnetic resonance spectroscopy (MRS) enables investigating the relationship between central antioxidant tone and functional outcomes at the time of first-episode psychosis (FEP). We hypothesized that patients with higher central antioxidant tone at first presentation will have better functional outcomes in early stages of illness. STUDY DESIGN: We scanned 57 patients with FEP and 30 matched healthy controls and estimated GSH resonance using 7-Tesla MRS. We minimized the confounding effects of illness chronicity, long-term treatment exposure, and metabolic complications by recruiting patients with <2 weeks of lifetime antipsychotic exposure on average and followed up this cohort for the next 1 year to determine functional outcomes. STUDY RESULTS: Patients who achieved employment/education or training status (EET) in the first year, had higher GSH at the baseline than healthy controls. Social and occupational functioning assessment scale (SOFAS) scores were also significantly higher in patients with higher GSH levels at the outset, after adjusting for various confounds including baseline SOFAS. Patients who were not in EET did not differ from healthy subjects in their GSH levels. CONCLUSION: Our observations support a key role for the central antioxidant tone in the functional outcomes of early psychosis.


Subject(s)
Antioxidants , Psychotic Disorders , Glutathione/metabolism , Humans , Magnetic Resonance Spectroscopy , Oxidative Stress , Psychotic Disorders/diagnostic imaging , Psychotic Disorders/drug therapy , Psychotic Disorders/metabolism
8.
Schizophr Bull Open ; 2(1): sgaa072, 2021 Jan.
Article in English | MEDLINE | ID: mdl-34746793

ABSTRACT

Progressive reduction in glutamatergic transmission has been proposed as an important component of the illness trajectory of schizophrenia. Despite its popularity, to date, this notion has not been convincingly tested in patients in early stages of schizophrenia. In a longitudinal 7T magnetic resonance spectroscopy (1H-MRS), we quantified glutamate at the dorsal anterior cingulate cortex in 21 participants with a median lifetime antipsychotic exposure of less than 3 days and followed them up after 6 months of treatment. Ten healthy controls were also scanned at 2 time points. While patients had significantly lower overall glutamate levels than healthy controls (F(1,27) = 5.23, P = .03), we did not observe a progressive change of glutamate concentration in patients (F(1,18) = 0.47, P = .50), and the group by time interaction was not significant (F(1,27) = 0.86, P = .36). On average, patients with early psychosis receiving treatment showed a 0.02 mM/y increase, while healthy controls showed a 0.06 mM/y reduction of MRS glutamate levels. Bayesian analysis of our observations does not support early, post-onset glutamate loss in schizophrenia. Interestingly, it provides evidence in favor of a lack of progressive glutamate change in our schizophrenia sample-indicating that the glutamate level at the onset of illness was the best predictor of the levels 6 months after treatment. A more nuanced view of glutamatergic physiology, linked to early cortical maturation, may be required to understand glutamate-mediated dynamics in schizophrenia.

9.
Sci Rep ; 11(1): 22333, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34785674

ABSTRACT

Myo-inositol is mainly found in astroglia and its levels has been shown to be reduced in the anterior cingulate cortex (ACC) of patients with schizophrenia. We investigate the status of astroglial integrity indexed by ACC myo-inositol at the onset and over the first 6 months of treatment of first episode schizophrenia. We employed 7 T magnetic resonance spectroscopy (1H-MRS) and quantified myo-inositol spectra at the dorsal ACC in 31 participants; 21 patients with schizophrenia with median lifetime antipsychotic exposure of less than 3 days, followed up after 6 months of treatment, and 10 healthy subjects scanned twice over the same period. We studied the time by group interaction for myo-inositol after adjusting for gender and age. We report significant reduction in myo-inositol concentration in the ACC in schizophrenia at an early, untreated state of acute illness that becomes insignificant over time, after instituting early intervention. This trajectory indicates that dynamic astroglial changes are likely to operate in the early stages of schizophrenia. MRS myo-inositol may be a critical marker of amelioration of active psychosis in early stages of schizophrenia.


Subject(s)
Antipsychotic Agents/administration & dosage , Astrocytes/metabolism , Gyrus Cinguli , Magnetic Resonance Imaging , Psychotic Disorders , Schizophrenia , Adolescent , Adult , Female , Gyrus Cinguli/diagnostic imaging , Gyrus Cinguli/metabolism , Humans , Inositol/metabolism , Longitudinal Studies , Male , Psychotic Disorders/diagnostic imaging , Psychotic Disorders/drug therapy , Psychotic Disorders/metabolism , Schizophrenia/diagnostic imaging , Schizophrenia/drug therapy , Schizophrenia/metabolism
10.
Antioxidants (Basel) ; 10(11)2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34829575

ABSTRACT

Schizophrenia continues to be an illness with poor outcome. Most mechanistic changes occur many years before the first episode of schizophrenia; these are not reversible after the illness onset. A developmental mechanism that is still modifiable in adult life may center on intracortical glutathione (GSH). A large body of pre-clinical data has suggested the possibility of notable GSH-deficit in a subgroup of patients with schizophrenia. Nevertheless, studies of intracortical GSH are not conclusive in this regard. In this review, we highlight the recent ultra-high field magnetic resonance spectroscopic studies linking GSH to critical outcome measures across various stages of schizophrenia. We discuss the methodological steps required to conclusively establish or refute the persistence of GSH-deficit subtype and clarify the role of the central antioxidant system in disrupting the brain structure and connectivity in the early stages of schizophrenia. We propose in-vivo GSH quantification for patient selection in forthcoming antioxidant trials in psychosis. This review offers directions for a promising non-dopaminergic early intervention approach in schizophrenia.

11.
Brain Sci ; 11(7)2021 Jul 17.
Article in English | MEDLINE | ID: mdl-34356175

ABSTRACT

A substantial number of individuals with clinical high-risk (CHR) mental state do not transition to psychosis. However, regardless of future diagnostic trajectories, many of these individuals develop poor social and occupational functional outcomes. The levels of glutathione, a crucial cortical antioxidant, may track variations in functional outcomes in early psychosis and prodromal states. Thirteen clinical high-risk and 30 healthy control volunteers were recruited for a 7-Tesla magnetic resonance spectroscopy scan with a voxel positioned within the dorsal anterior cingulate cortex (ACC). Clinical assessment scores were collected to determine if any association was observable with glutathione levels. The Bayesian Spearman's test revealed a positive association between the Social and Occupational Functioning Assessment Scale (SOFAS) and the glutathione concentration in the clinical high-risk group but not in the healthy control group. After accounting for variations in the SOFAS scores, the CHR group had higher GSH levels than the healthy subjects. This study is the first to use 7-Tesla magnetic resonance spectroscopy to test whether ACC glutathione levels relate to social and occupational functioning in a clinically high-risk group and offers preliminary support for glutathione levels as a clinically actionable marker of prognosis in emerging adults presenting with risk features for various severe mental illnesses.

12.
JAMA Psychiatry ; 78(6): 667-681, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33881460

ABSTRACT

Importance: Proton magnetic resonance spectroscopy (1H-MRS) studies indicate that altered brain glutamatergic function may be associated with the pathophysiology of schizophrenia and the response to antipsychotic treatment. However, the association of altered glutamatergic function with clinical and demographic factors is unclear. Objective: To assess the associations of age, symptom severity, level of functioning, and antipsychotic treatment with brain glutamatergic metabolites. Data Sources: The MEDLINE database was searched to identify journal articles published between January 1, 1980, and June 3, 2020, using the following search terms: MRS or magnetic resonance spectroscopy and (1) schizophrenia or (2) psychosis or (3) UHR or (4) ARMS or (5) ultra-high risk or (6) clinical high risk or (7) genetic high risk or (8) prodrome* or (9) schizoaffective. Authors of 114 1H-MRS studies measuring glutamate (Glu) levels in patients with schizophrenia were contacted between January 2014 and June 2020 and asked to provide individual participant data. Study Selection: In total, 45 1H-MRS studies contributed data. Data Extraction and Synthesis: Associations of Glu, Glu plus glutamine (Glx), or total creatine plus phosphocreatine levels with age, antipsychotic medication dose, symptom severity, and functioning were assessed using linear mixed models, with study as a random factor. Main Outcomes and Measures: Glu, Glx, and Cr values in the medial frontal cortex (MFC) and medial temporal lobe (MTL). Results: In total, 42 studies were included, with data for 1251 patients with schizophrenia (mean [SD] age, 30.3 [10.4] years) and 1197 healthy volunteers (mean [SD] age, 27.5 [8.8] years). The MFC Glu (F1,1211.9 = 4.311, P = .04) and Glx (F1,1079.2 = 5.287, P = .02) levels were lower in patients than in healthy volunteers, and although creatine levels appeared lower in patients, the difference was not significant (F1,1395.9 = 3.622, P = .06). In both patients and volunteers, the MFC Glu level was negatively associated with age (Glu to Cr ratio, F1,1522.4 = 47.533, P < .001; cerebrospinal fluid-corrected Glu, F1,1216.7 = 5.610, P = .02), showing a 0.2-unit reduction per decade. In patients, antipsychotic dose (in chlorpromazine equivalents) was negatively associated with MFC Glu (estimate, 0.10 reduction per 100 mg; SE, 0.03) and MFC Glx (estimate, -0.11; SE, 0.04) levels. The MFC Glu to Cr ratio was positively associated with total symptom severity (estimate, 0.01 per 10 points; SE, 0.005) and positive symptom severity (estimate, 0.04; SE, 0.02) and was negatively associated with level of global functioning (estimate, 0.04; SE, 0.01). In the MTL, the Glx to Cr ratio was positively associated with total symptom severity (estimate, 0.06; SE, 0.03), negative symptoms (estimate, 0.2; SE, 0.07), and worse Clinical Global Impression score (estimate, 0.2 per point; SE, 0.06). The MFC creatine level increased with age (estimate, 0.2; SE, 0.05) but was not associated with either symptom severity or antipsychotic medication dose. Conclusions and Relevance: Findings from this mega-analysis suggest that lower brain Glu levels in patients with schizophrenia may be associated with antipsychotic medication exposure rather than with greater age-related decline. Higher brain Glu levels may act as a biomarker of illness severity in schizophrenia.


Subject(s)
Antipsychotic Agents/pharmacology , Brain/metabolism , Glutamic Acid/metabolism , Schizophrenia/drug therapy , Schizophrenia/metabolism , Schizophrenia/physiopathology , Adult , Age Factors , Biomarkers/metabolism , Brain/diagnostic imaging , Brain/drug effects , Female , Glutamic Acid/drug effects , Glutamine/drug effects , Glutamine/metabolism , Humans , Male , Patient Acuity , Proton Magnetic Resonance Spectroscopy , Young Adult
13.
J Psychiatry Neurosci ; 46(3): E337-E346, 2021 04 27.
Article in English | MEDLINE | ID: mdl-33904669

ABSTRACT

Background: Disorganized thinking is a core feature of acute psychotic episodes that is linked to social and vocational functioning. Several lines of evidence implicate disrupted cognitive control, excitatory overdrive and oxidative stress relating to the anterior cingulate cortex as mechanisms of conceptual disorganization (CD). We examined 3 candidate mechanistic markers related to CD in firstepisode psychosis: glutamate excess, cortical antioxidant (glutathione) status and the integrity of the cingulum bundle that connects regions implicated in cognitive control. Methods: We used fractional anisotropy maps from 7 T diffusion-weighted imaging to investigate the bilateral cingulum based on a probabilistic white matter atlas. We compared high CD, low CD and healthy control groups and performed probabilistic fibre tracking from the identified clusters (regions of interest within the cingulum) to the rest of the brain. We quantified glutamate and glutathione using magnetic resonance spectroscopy (MRS) in the dorsal anterior cingulate cortex. Results: We found a significant fractional anisotropy reduction in a cluster in the left cingulum in the high CD group compared to the low CD group (Cohen's d = 1.39; p < 0.001) and controls (Cohen's d = 0.86; p = 0.009). Glutamate levels did not vary among groups, but glutathione levels were higher in the high CD group than in the low CD group. We also found higher glutathione related to lower fractional anisotropy in the cingulum cluster in the high CD group. Limitations: The MRS measures of glutamine were highly uncertain, and MRS was acquired from a single voxel only. Conclusion: Acute CD relates to indicators of oxidative stress, as well as reduced white matter integrity of the cingulum, but not to MRI-based glutamatergic excess. We propose that both oxidative imbalance and structural dysconnectivity underlie acute disorganization.


Subject(s)
Diffusion Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Psychotic Disorders/diagnostic imaging , Psychotic Disorders/psychology , White Matter/diagnostic imaging , Anisotropy , Female , Glutamic Acid/metabolism , Glutathione/metabolism , Humans , Male , Psychotic Disorders/metabolism , White Matter/metabolism , Young Adult
14.
Article in English | MEDLINE | ID: mdl-33691200

ABSTRACT

Disrupted serotonergic and glutamatergic signaling interact and contribute to the pathophysiology of schizophrenia, which is particularly relevant for the hippocampus where diverse expression of serotonin receptors is noted. Hippocampal atrophy is a well-established feature of schizophrenia, with select subfields hypothesized as particularly vulnerable due to variation in glutamate receptor densities. We investigated hippocampal anomalies in first-episode psychosis (FEP) in relation to receptor distributions by leveraging 4 sources of data: (1) ultra high-field (7-Tesla) structural neuroimaging, and (2) proton magnetic resonance spectroscopy (1H-MRS) of glutamate from 27 healthy and 41 FEP subjects, (3) gene expression data from the Allen Human Brain Atlas and (4) atlases of the serotonin receptor system. Automated methods delineated the hippocampus to map receptor density across subfields. We used gene expression data to correlate serotonin and glutamate receptor genes across the hippocampus. Measures of individual hippocampal shape-receptor alignment were derived through normative modelling and correlations to receptor distributions, termed Receptor-Specific Morphometric Signatures (RSMS). We found reduced hippocampal volumes in FEP, while CA4-dentate gyrus showed greatest reductions. Gene expression indicated 5-HT1A and 5-HT4 to correlate with AMPA and NMDA expression, respectively. Magnitudes of subfield volumetric reduction in FEP correlated most with 5-HT1A (R = 0.64, p = 4.09E-03) and 5-HT4 (R = 0.54, p = 0.02) densities as expected, and replicated using previously published data from two FEP studies. Right-sided 5-HT4-RSMS was correlated with MRS glutamate (R = 0.357, p = 0.048). We demonstrate a putative glutamate-driven hippocampal variability in FEP through a serotonin receptor-density gated mechanism, thus outlining a mechanistic interplay between serotonin and glutamate in determining the hippocampal morphology in schizophrenia.


Subject(s)
Glutamic Acid , Hippocampus/pathology , Neuroanatomy , Psychotic Disorders/physiopathology , Receptors, Serotonin , Adult , Antipsychotic Agents/therapeutic use , Atrophy/pathology , Brain/pathology , Female , Humans , Male , Proton Magnetic Resonance Spectroscopy , Psychotic Disorders/drug therapy
15.
NPJ Schizophr ; 7(1): 4, 2021 Jan 26.
Article in English | MEDLINE | ID: mdl-33500416

ABSTRACT

Network-level dysconnectivity has been studied in positive and negative symptoms of schizophrenia. Conceptual disorganization (CD) is a symptom subtype that predicts impaired real-world functioning in psychosis. Systematic reviews have reported aberrant connectivity in formal thought disorder, a construct related to CD. However, no studies have investigated whole-brain functional correlates of CD in psychosis. We sought to investigate brain regions explaining the severity of CD in patients with first-episode psychosis (FEPs) compared with healthy controls (HCs). We computed whole-brain binarized degree centrality maps of 31 FEPs, 25 HCs, and characterized the patterns of network connectivity in the 2 groups. In FEPs, we related these findings to the severity of CD. We also studied the effect of positive and negative symptoms on altered network connectivity. Compared to HCs, reduced centrality of a right superior temporal gyrus (rSTG) cluster was observed in the FEPs. In patients exhibiting high CD, increased centrality of a medial superior parietal (mSPL) cluster was observed, compared to patients exhibiting low CD. This cluster was strongly correlated with CD scores but not with other symptom scores. Our observations are congruent with previous findings of reduced but not increased centrality. We observed increased centrality of mSPL suggesting that cortical reorganization occurs to provide alternate routes for information transfer. These findings provide insight into the underlying neural processes mediating the presentation of symptoms in untreated FEP. Longitudinal tracking of the symptom course will be useful to assess the mechanisms underlying these compensatory changes.

16.
Antioxidants (Basel) ; 10(1)2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33430154

ABSTRACT

Oxidative stress plays a key role in the pathophysiology of schizophrenia. While free radicals produced by glutamatergic excess and oxidative metabolism have damaging effects on brain tissue, antioxidants such as glutathione (GSH) counteract these effects. The interaction between glutamate (GLU) and GSH is centered on N-Methyl-D-aspartate (NMDA) receptors. GSH levels increase during glutamate-mediated excitatory neuronal activity, which serves as a checkpoint to protect neurons from oxidative damage and reduce excitatory overdrive. We studied the possible influence of GSH on the glutamate-mediated dysconnectivity in 19 first-episode schizophrenia (FES) patients and 20 healthy control (HC) subjects. Using ultra-high field (7 Tesla) magnetic resonance spectroscopy (MRS) and resting state functional magnetic resonance imaging (fMRI), we measured GSH and GLU levels in the dorsal anterior cingulate cortex (dACC) and blood-oxygenation level-dependent activity in both the dACC and the anterior insula (AI). Using spectral dynamic causal modeling, we found that when compared to HCs, in FES patients inhibitory activity within the dACC decreased with GLU levels whereas inhibitory activity in both the dACC and AI increased with GSH levels. Our model explains how higher levels of GSH can reverse the downstream pathophysiological effects of a hyperglutamatergic state in FES. This provides an initial insight into the possible mechanistic effect of antioxidant system on the excitatory overdrive in the salience network (dACC-AI).

17.
Cell Rep ; 31(5): 107585, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32375032

ABSTRACT

Dendritic cells, cells of the innate immune system, are found in a steady state poised to respond to activating stimuli. Once stimulated, they rapidly undergo dynamic changes in gene expression to adopt an activated phenotype capable of stimulating immune responses. We find that the microRNA miR-9 is upregulated in both bone marrow-derived DCs and conventional DC1s but not in conventional DC2s following stimulation. miR-9 expression in BMDCs and conventional DC1s promotes enhanced DC activation and function, including the ability to stimulate T cell activation and control tumor growth. We find that miR-9 regulated the expression of several negative regulators of transcription, including the transcriptional repressor Polycomb group factor 6 (Pcgf6). These findings demonstrate that miR-9 facilitates the transition of DCs from steady state to mature state by regulating the expression of several negative regulators of DC function in a cell-type-specific manner.


Subject(s)
Cell Differentiation/genetics , Dendritic Cells/metabolism , Lymphocyte Activation/genetics , MicroRNAs/genetics , Cell Differentiation/immunology , Dendritic Cells/immunology , Humans , MicroRNAs/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Up-Regulation
18.
Biol Psychiatry ; 88(3): 273-281, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32312577

ABSTRACT

BACKGROUND: Functional dysconnection in schizophrenia is underwritten by a pathophysiology of the glutamate neurotransmission that affects the excitation-inhibition balance in key nodes of the salience network. Physiologically, this manifests as aberrant effective connectivity in intrinsic connections involving inhibitory interneurons. In computational terms, this produces a pathology of evidence accumulation and ensuing inference in the brain. Finally, the pathophysiology and aberrant inference would partially account for the psychopathology of schizophrenia as measured in terms of symptoms and signs. We refer to this formulation as the 3-level hypothesis. METHODS: We tested the hypothesis in core nodes of the salience network (the dorsal anterior cingulate cortex [dACC] and the anterior insula) of 20 patients with first-episode psychosis and 20 healthy control subjects. We established 3-way correlations between the magnetic resonance spectroscopy measures of glutamate, effective connectivity of resting-state functional magnetic resonance imaging, and correlations between measures of this connectivity and estimates of precision (inherent in evidence accumulation in the Stroop task) and psychopathology. RESULTS: Glutamate concentration in the dACC was associated with higher and lower inhibitory connectivity in the dACC and in the anterior insula, respectively. Crucially, glutamate concentration correlated negatively with the inhibitory influence on the excitatory neuronal population in the dACC of subjects with first-episode psychosis. Furthermore, aberrant computational parameters of the Stroop task performance were associated with aberrant inhibitory connections. Finally, the strength of connections from the dACC to the anterior insula correlated negatively with severity of social withdrawal. CONCLUSIONS: These findings support a link between glutamate-mediated cortical disinhibition, effective-connectivity deficits, and computational performance in psychosis.


Subject(s)
Schizophrenia , Cerebral Cortex/diagnostic imaging , Glutamic Acid , Gyrus Cinguli , Humans , Magnetic Resonance Imaging , Schizophrenia/diagnostic imaging
19.
Mol Psychiatry ; 25(8): 1640-1650, 2020 08.
Article in English | MEDLINE | ID: mdl-32205866

ABSTRACT

Early response to antipsychotic medications is one of the most important determinants of later symptomatic and functional outcomes in psychosis. Glutathione and glutamate have emerged as promising therapeutic targets for patients demonstrating inadequate response to dopamine-blocking antipsychotics. Nevertheless, the role of these neurochemicals in the mechanism of early antipsychotic response remains poorly understood. Using a longitudinal design and ultrahigh field 7-T magnetic resonance spectroscopy (MRS) protocol in 53 subjects, we report the association between dorsal anterior cingulate cortex glutamate and glutathione, with time to treatment response in drug naive (34.6% of the sample) or minimally medicated first episode patients with schizophreniform disorder, schizophrenia, and schizoaffective disorder. Time to response was defined as the number of weeks required to reach a 50% reduction in the PANSS-8 scores. Higher glutathione was associated with shorter time to response (F = 4.86, P = 0.017), while higher glutamate was associated with more severe functional impairment (F = 5.33, P = 0.008). There were no significant differences between patients and controls on measures of glutamate or glutathione. For the first time, we have demonstrated an association between higher glutathione and favorable prognosis in FEP. We propose that interventions that increase brain glutathione levels may improve outcomes of early intervention in psychosis.


Subject(s)
Antipsychotic Agents/therapeutic use , Glutamic Acid/metabolism , Glutathione/metabolism , Psychotic Disorders/diagnostic imaging , Psychotic Disorders/drug therapy , Antipsychotic Agents/pharmacology , Female , Glutamic Acid/analysis , Glutathione/analysis , Gyrus Cinguli/drug effects , Gyrus Cinguli/metabolism , Humans , Longitudinal Studies , Magnetic Resonance Spectroscopy , Male , Prognosis , Psychotic Disorders/diagnosis , Psychotic Disorders/metabolism , Schizophrenia/diagnostic imaging , Schizophrenia/drug therapy , Schizophrenia/metabolism , Time Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...