Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Horiz ; 9(6): 1774, 2022 Jun 06.
Article in English | MEDLINE | ID: mdl-35506872

ABSTRACT

Correction for 'On-demand quantum spin Hall insulators controlled by two-dimensional ferroelectricity' by Jiawei Huang et al., Mater. Horiz., 2022, DOI: https://doi.org/10.1039/d2mh00334a.

2.
Mater Horiz ; 9(5): 1440-1447, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35438108

ABSTRACT

We propose a new class of quantum materials, type-II two-dimensional ferroelectric topological insulators (2DFETIs), which allow non-volatility and an on-off switch of quantum spin Hall states. A general strategy is developed to realize type-II 2DFETIs using only topologically trivial 2D ferroelectrics. The built-in electric field arising from the out-of-plane polarization across the bilayer heterostrucuture of 2D ferroelectrics enables robust control of the band gap size and band inversion strength, which can be utilized to manipulate the topological phase transitions on-demand. Using first-principles calculations with hybrid density functionals, we demonstrate that a series of bilayer heterostructures are type-II 2DFETIs characterized with a direct coupling between the band topology and polarization state. We propose a few 2DFETI-based quantum electronics, including domain-wall quantum circuits and topological memristors.

3.
ACS Nano ; 14(10): 13905-13912, 2020 Oct 27.
Article in English | MEDLINE | ID: mdl-32813494

ABSTRACT

One key to improve the performance of advanced optoelectronic devices and energy harvesting in graphene is to understand the predominant carrier scattering via optical phonons. Nevertheless, low light absorbance in graphene yields a limited photoexcited carrier density, hampering the hot carrier effect, which is strongly correlated to the hot optical phonon bottleneck effect as the energy-loss channel. Here, by integrating graphene with monolayer MoS2 possessing stronger light absorbance, we demonstrate an efficient interfacial hot carrier transfer between graphene and MoS2 in their heterostructure with a prolonged relaxation time using broadband transient differential transmittance spectroscopy. We observe that the carrier relaxation time of graphene in the heterostructure is 4 times slower than that of bare graphene. This is explained by nondissipative interlayer transfer from MoS2 to graphene, which is attributed to the enhanced hot optical phonon bottleneck effect of graphene in the heterostructure by an increased photoexcited carrier population. A significant reduction of both amplitude and relaxation time in A- and B-excitons is another evidence of the interlayer transfer from MoS2 to graphene. The nondissipative interlayer charge transfer from MoS2 to graphene is confirmed by density functional calculations. This provides a different platform to further study the photoinduced hot carrier effect in graphene heterostructures for photothermoelectric detectors or hot carrier solar cells.

4.
ACS Nano ; 13(6): 6662-6669, 2019 Jun 25.
Article in English | MEDLINE | ID: mdl-31187979

ABSTRACT

Many scientific and engineering efforts have been made to realize graphene electronics by fully utilizing intrinsic properties of ideal graphene for last decades. The most technical huddles come from the absence of wafer-scale graphene with a single-crystallinity on dielectric substrates. Here, we report an epitaxial growth of single-crystalline monolayer graphene directly on a single-crystalline dielectric SiON-SiC(0001) with a full coverage via epitaxial chemical vapor deposition (CVD) without metal catalyst. The dielectric surface of SiON provides atomically flat and chemically inert interface by passivation of dangling bonds, which keeps intrinsic properties of graphene. Atomic structures with a clean interface, full coverage of single-crystalline monolayer, and the epitaxy of graphene on SiON were confirmed macroscopically by mapping low energy electron diffraction (LEED) and Raman spectroscopy, and atomically by scanning tunneling microscopy (STM). Both of measured and calculated local density of states (LDOS) exhibit a symmetric and sharp Dirac cone with a Dirac point located at a Fermi level. Our method provides a route to utilize a single-crystalline dielectric substrate for ideal graphene growth for future applications.

5.
ACS Nano ; 13(2): 1127-1135, 2019 Feb 26.
Article in English | MEDLINE | ID: mdl-30592611

ABSTRACT

It is widely accepted in condensed matter physics and material science communities that a single-oriented overlayer cannot be grown on an amorphous substrate because the disordered substrate randomizes the orientation of the seeds, leading to polycrystalline grains. In the case of two-dimensional materials such as graphene, the large-scale growth of single-oriented materials on an amorphous substrate has remained unsolved. Here, we demonstrate experimentally that the presence of uniformly oriented graphene seeds facilitates the growth of millimeter-scale single-oriented graphene with 3 × 4 mm2 on palladium silicide, which is an amorphous thin film, where the uniformly oriented graphene seeds were epitaxially grown. The amorphous palladium silicide film promotes the growth of the single-oriented growth of graphene by causing carbon atoms to be diffusive and mobile within and on the substrate. In contrast to these results, without the uniformly oriented seeds, the amorphous substrate leads to the growth of polycrystalline graphene grains. This millimeter-scale single-oriented growth from uniformly oriented seeds can be applied to other amorphous substrates.

SELECTION OF CITATIONS
SEARCH DETAIL
...