Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ISME J ; 5(8): 1357-73, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21390077

ABSTRACT

This is the second paper in a series of three that investigates eukaryotic microbial diversity and taxon distribution in the Cariaco Basin, Venezuela, the ocean's largest anoxic marine basin. Here, we use phylogenetic information, multivariate community analyses and statistical richness predictions to test whether protists exhibit habitat specialization within defined geochemical layers of the water column. We also analyze spatio-temporal distributions of protists across two seasons and two geographic sites within the basin. Non-metric multidimensional scaling indicates that these two basin sites are inhabited by distinct protistan assemblages, an observation that is supported by the minimal overlap in observed and predicted richness of sampled sites. A comparison of parametric richness estimations indicates that protistan communities in closely spaced-but geochemically different-habitats are very dissimilar, and may share as few as 5% of total operational taxonomic units (OTUs). This is supported by a canonical correspondence analysis, indicating that the empirically observed OTUs are organized along opposing gradients in oxidants and reductants. Our phylogenetic analyses identify many new clades at species to class levels, some of which appear restricted to specific layers of the water column and have a significantly nonrandom distribution. These findings suggest many pelagic protists are restricted to specific habitats, and likely diversify, at least in part due to separation by geochemical barriers.


Subject(s)
Ecosystem , Eukaryota/physiology , Seawater/parasitology , Caribbean Region , Phylogeny , RNA, Protozoan/genetics , RNA, Ribosomal/genetics , Venezuela
2.
ISME J ; 5(8): 1344-56, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21390079

ABSTRACT

Microbial diversity and distribution are topics of intensive research. In two companion papers in this issue, we describe the results of the Cariaco Microbial Observatory (Caribbean Sea, Venezuela). The Basin contains the largest body of marine anoxic water, and presents an opportunity to study protistan communities across biogeochemical gradients. In the first paper, we survey 18S ribosomal RNA (rRNA) gene sequence diversity using both Sanger- and pyrosequencing-based approaches, employing multiple PCR primers, and state-of-the-art statistical analyses to estimate microbial richness missed by the survey. Sampling the Basin at three stations, in two seasons, and at four depths with distinct biogeochemical regimes, we obtained the largest, and arguably the least biased collection of over 6000 nearly full-length protistan rRNA gene sequences from a given oceanographic regime to date, and over 80,000 pyrosequencing tags. These represent all major and many minor protistan taxa, at frequencies globally similar between the two sequence collections. This large data set provided, via the recently developed parametric modeling, the first statistically sound prediction of the total size of protistan richness in a large and varied environment, such as the Cariaco Basin: over 36,000 species, defined as almost full-length 18S rRNA gene sequence clusters sharing over 99% sequence homology. This richness is a small fraction of the grand total of known protists (over 100,000-500,000 species), suggesting a degree of protistan endemism.


Subject(s)
Eukaryota/classification , Eukaryota/isolation & purification , Seawater/parasitology , Biodiversity , Caribbean Region , DNA, Protozoan/genetics , Genes, rRNA , Polymerase Chain Reaction , RNA, Ribosomal, 18S/genetics , Venezuela
3.
ISME J ; 3(12): 1365-73, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19693101

ABSTRACT

The rRNA approach is the principal tool to study microbial diversity, but it has important biases. These include polymerase chain reaction (PCR) primers bias, and relative inefficiency of DNA extraction techniques. Such sources of potential undersampling of microbial diversity are well known, but the scale of the undersampling has not been quantified. Using a marine tidal flat bacterial community as a model, we show that even with unlimited sampling and sequencing effort, a single combination of PCR primers/DNA extraction technique enables theoretical recovery of only half of the richness recoverable with three such combinations. This shows that different combinations of PCR primers/DNA extraction techniques recover in principle different species, as well as higher taxa. The majority of earlier estimates of microbial richness seem to be underestimates. The combined use of multiple PCR primer sets, multiple DNA extraction techniques, and deep community sequencing will minimize the biases and recover substantially more species than prior studies, but we caution that even this--yet to be used--approach may still leave an unknown number of species and higher taxa undetected.


Subject(s)
Biodiversity , DNA Primers/genetics , DNA, Ribosomal/genetics , DNA, Ribosomal/isolation & purification , Diagnostic Errors , Environmental Microbiology , Metagenomics/methods , Polymerase Chain Reaction/methods , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification
4.
Extremophiles ; 13(1): 151-67, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19057844

ABSTRACT

Environmental factors restrict the distribution of microbial eukaryotes but the exact boundaries for eukaryotic life are not known. Here, we examine protistan communities at the extremes of salinity and osmotic pressure, and report rich assemblages inhabiting Bannock and Discovery, two deep-sea superhaline anoxic basins in the Mediterranean. Using a rRNA-based approach, we detected 1,538 protistan rRNA gene sequences from water samples with total salinity ranging from 39 to 280 g/Kg, and obtained evidence that this DNA was endogenous to the extreme habitat sampled. Statistical analyses indicate that the discovered phylotypes represent only a fraction of species actually inhabiting both the brine and the brine-seawater interface, with as much as 82% of the actual richness missed by our survey. Jaccard indices (e.g., for a comparison of community membership) suggest that the brine/interface protistan communities are unique to Bannock and Discovery basins, and share little (0.8-2.8%) in species composition with overlying waters with typical marine salinity and oxygen tension. The protistan communities from the basins' brine and brine/seawater interface appear to be particularly enriched with dinoflagellates, ciliates and other alveolates, as well as fungi, and are conspicuously poor in stramenopiles. The uniqueness and diversity of brine and brine-interface protistan communities make them promising targets for protistan discovery.


Subject(s)
Oxygen/analysis , Seawater/microbiology , Sodium Chloride/analysis , Water Microbiology , Mediterranean Sea , Phylogeny , RNA, Ribosomal/genetics , Species Specificity
5.
BMC Microbiol ; 8: 222, 2008 Dec 16.
Article in English | MEDLINE | ID: mdl-19087295

ABSTRACT

BACKGROUND: The main tool to discover novel microbial eukaryotes is the rRNA approach. This approach has important biases, including PCR discrimination against certain rRNA gene species, which makes molecular inventories skewed relative to the source communities. The degree of this bias has not been quantified, and it remains unclear whether species missed from clone libraries could be recovered by increasing sequencing efforts, or whether they cannot be detected in principle. Here we attempt to discriminate between these possibilities by statistically analysing four protistan inventories obtained using different general eukaryotic PCR primers. RESULTS: We show that each PCR primer set-specific clone library is not a sample from the community diversity but rather from a fraction of this diversity. Therefore, even sequencing such clone libraries to saturation would only recover that fraction, which, according to the parametric models, varies between 17 +/- 4% to 49 +/- 10%, depending on the set of primers. The pooled data is thus qualitatively richer than individual libraries, even if normalized to the same sequencing effort. CONCLUSION: The use of a single pair of primers leads to significant underestimation of the true community richness at all levels of taxonomic hierarchy. The majority of available protistan rRNA gene surveys likely sampled less than half of the target diversity, and might have completely missed the rest. The use of multiple PCR primers reduces this bias but does not necessarily eliminate it.


Subject(s)
DNA, Protozoan/genetics , Eukaryota/genetics , Genetic Variation , RNA, Ribosomal/genetics , Animals , DNA Primers/genetics , DNA, Ribosomal/genetics , Phylogeny , Sequence Analysis, DNA
6.
J Microbiol ; 46(1): 34-9, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18337690

ABSTRACT

Archaea have been found in many more diverse habitats than previously believed due in part to modern molecular approaches to discovering microbial diversity. We report here an unexpected expansion of the habitat diversity of the Archaea in the Cariaco Basin we found using a primer set designed for 18S eukaryotic rDNA sequence analysis. The results presented here expand the originally identified 9 archaeal clones reported in this environment using bacterial/archaeal primers to 152 archaeal clones: 67 (18 OTU) of these clones were found at a depth of 900 m of station A while 71 (9 OTU) of them were at a depth of between 300 approximately 335 m of station B&C depending upon which location the samples were taken. We used three phylogenetic analysis methods and detected 20 phylotypes belonging to a single previously unreported group distantly related to the Crenarchaeota. Also, we determined that the original nine sequences did not fall into any of the known phyla of the Archaea suggesting that they may represent a novel group within the Kingdom Archaea. Thus, from these two studies, we suggest that Archaea in the Cariaco Basin could be unique; however, further studies using archaeal-specific primers and the design of new primers as well as the systematic use of several different primer combinations may improve the chances of understanding the archeal diversity in the Cariaco Basin.


Subject(s)
Crenarchaeota/classification , Crenarchaeota/isolation & purification , Seawater/microbiology , Archaea/classification , Archaea/genetics , Archaea/isolation & purification , Cloning, Molecular , Crenarchaeota/genetics , DNA Primers/genetics , DNA, Archaeal/genetics , DNA, Ribosomal/genetics , Molecular Sequence Data , Polymerase Chain Reaction , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Venezuela
7.
Proc Natl Acad Sci U S A ; 103(1): 117-22, 2006 Jan 03.
Article in English | MEDLINE | ID: mdl-16368757

ABSTRACT

Microorganisms are spectacularly diverse phylogenetically, but available estimates of their species richness are vague and problematic. For example, for comparable environments, the estimated numbers of species range from a few dozen or hundreds to tens of thousands and even half a million. Such estimates provide no baseline information on either local or global microbial species richness. We argue that this uncertainty is due in large part to the way statistical tools are used, if not indeed misused, in biodiversity research. Here we develop a powerful synthetic statistical approach to quantify biodiversity. It provides statistically sound estimates of microbial richness at any level of taxonomic hierarchy. We apply this approach to a large original 16S rRNA dataset on marine bacterial diversity and show that the number of bacterial species in a sample from marine sediments is (2.4 +/- 0.5 SE) x 10(3). We argue that our methodology provides estimates of microbial richness that are reliable and general, have biologically meaningful SEs, and meet other fundamental statistical standards. This approach can be an essential tool in biodiversity research, and the estimates of microbial richness presented here can serve as a baseline in microbial diversity studies.


Subject(s)
Bacteria/genetics , Biodiversity , Geologic Sediments/microbiology , Models, Statistical , Phylogeny , Massachusetts , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sequence Homology , Species Specificity
8.
J Microbiol ; 42(4): 285-91, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15650684

ABSTRACT

The soil bacterial community and some inoculated bacteria were monitored to assess the microbial responses to prescribed fire in their microcosm. An acridine orange direct count of the bacteria in the unburned control soil were maintained at a relatively stable level (2.0 approximately 2.7 x 10(9) cells/g(-1).soil) during the 180 day study period. The number of bacteria in the surface soil was decreased by fire, but was restored after 3 months. Inoculation of some bacteria increased the number of inoculated bacteria several times and these elevated levels lasted several months. The ratios of eubacteria detected by a fluorescent in situ hybridization (FISH) method to direct bacterial count were in the range of 60 approximately 80% during the study period, with the exception of some lower values at the beginning, but there were no definite differences between the burned and unburned soils or the inoculated and uninoculated soils. In the unburned control soil, the ratios of alpha-, beta- and gamma-subgroups of the proteobacteria, Cytophaga-Flavobacterium and other eubacteria groups to that of the entire eubacteria were 13.7, 31.7, 17.1, 16.8 and 20.8%, respectively, at time 0. The overall change on the patterns of the ratios of the 5 subgroups of eubacteria in the uninoculated burned and inoculated soils were similar to those of the unburned control soil, with the exception of some minor variations during the initial period. The proportions of each group of eubacteria became similar in the different microcosms after 6 months, which may indicate the recovery of the original soil microbial community structure after fire or the inoculation of some bacteria. The populations of Azotobacter vinelandii, Bacillus megaterium and Pseudomonas fluorescens, which had been inoculated to enhance the microbial activities, and monitored by FISH method, showed similar changes in the microcosms, and maintained high levels for several months.


Subject(s)
Bacteria/growth & development , Ecosystem , Fires , Soil Microbiology , Trees , Bacillus/growth & development , Bacillus/isolation & purification , Bacteria/isolation & purification , Colony Count, Microbial , Environmental Monitoring , Gram-Negative Aerobic Rods and Cocci/growth & development , Gram-Negative Aerobic Rods and Cocci/isolation & purification , In Situ Hybridization, Fluorescence , Proteobacteria/growth & development , Proteobacteria/isolation & purification , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...