Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 29(10): 105502, 2018 Mar 09.
Article in English | MEDLINE | ID: mdl-29328061

ABSTRACT

We report the method of fabrication of nano-gaps (known as hot spots) in Ag thin film using a sodium chloride (NaCl) sacrificial layer for Raman enhancement. The Ag thin film (20-50 nm) on the NaCl sacrificial layer undergoes an interfacial reaction due to the AgCl formed at the interface during water molecule intercalation. The intercalated water molecules can dissolve the NaCl molecules at interfaces and form the ionic state of Na+ and Cl-, promoting the AgCl formation. The Ag atoms can migrate by the driving force of this interfacial reaction, resulting in the formation of nano-size gaps in the film. The surface-enhanced Raman scattering activity of Ag films with nano-size gaps has been investigated using Raman reporter molecules, Rhodamine 6G (R6G).

2.
RSC Adv ; 8(23): 12927-12932, 2018 Apr 03.
Article in English | MEDLINE | ID: mdl-35541281

ABSTRACT

Herein, we fabricated a super-hydrophobic SERS substrate using Sn-doped indium oxide (Indium-tin-oxide: ITO) nano-branches as a template. ITO nano-branches with tens of nanometer diameter are first fabricated through the vapor-liquid-solid (VLS) growth to provide roughness of the substrate. 10 nm thickness of Ag thin film was deposited and then treated with the post-annealing process to create numerous air-pockets in the Ag film, forming a hierarchical Ag nanostructures. The resulting substrate obtained Cassie's wetting property with a water contact angle of 151°. Compared to the normal hydrophobic Ag nanoparticle substrate, increase of about 4.25-fold higher SERS signal was obtained for 7 µL of rhodamine 6G aqueous solutions.

SELECTION OF CITATIONS
SEARCH DETAIL
...