Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Reprod Fertil Dev ; 34(16): 1052-1057, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36109872

ABSTRACT

CONTEXT: Despite the absence of light within the body, the application of microscopy during stages of in vitro embryo production has led to the discovery of light irradiation effects on embryo preimplantation development. AIMS: To determine the optimal light irradiation wavelengths at various embryo stages for improving the preimplantation development of mouse embryos and the quality (total cell number) of blastocysts. METHOD: All in vitro procedures of zygote or 2-cell embryo manipulation, embryo monitoring, and culture medium exchange were conducted under visible (390-750nm), blue (445-500nm), green (500-575nm), yellow (575-585nm), or red (620-750nm) light irradiation wavelength. KEY RESULTS: We found that blue, green, and yellow light irradiation during in vitro blastocyst production from zygotes significantly improved blastocyst production and quality, compared to visible and red light irradiation. However, 2-cell embryos exposed to yellow light during in vitro blastocyst production produced significantly more high-quality blastocysts than did 2-cell embryos exposed to visible, blue, green, or red light. After exposure to blue and green - but not yellow - light during in vitro zygote manipulation, yellow light irradiation during embryo monitoring and culture medium exchange triggered significant retardation of preimplantation development. CONCLUSION: These results demonstrate that yellow light irradiation during in vitro blastocyst production, regardless of embryo stage, improves preimplantation development of mouse embryos. IMPLICATIONS: The present study will contribute to produce greater high-quality blastocysts and reduce experimental errors generated by light exposure during mouse embryo-related studies.


Subject(s)
Blastocyst , Embryo, Mammalian , Embryonic Development , Light , Animals , Blastocyst/radiation effects , Culture Media , Embryo, Mammalian/radiation effects , Embryonic Development/radiation effects , Light/adverse effects , Mice , Zygote
2.
Foods ; 10(9)2021 Aug 28.
Article in English | MEDLINE | ID: mdl-34574130

ABSTRACT

A wide variety of foods manufactured by nanotechnology are commercially available on the market and labeled as nanoproducts. However, it is challenging to determine the presence of nanoparticles (NPs) in complex food matrices and processed foods. In this study, top-down-approach-produced (TD)-NP products and nanobubble waters (NBWs) were chosen as representative powdered and liquid nanoproducts, respectively. The characterization and determination of NPs in TD-NP products and NBWs were carried out by measuring constituent particle sizes, hydrodynamic diameters, zeta potentials, and surface chemistry. The results show that most NBWs had different characteristics compared with those of conventional sparkling waters, but nanobubbles were unstable during storage. On the other hand, powdered TD-NP products were found to be highly aggregated, and the constituent particle sizes less than 100 nm were remarkably observed after dispersion compared with counterpart conventional bulk-sized products by scanning electron microscopy at low acceleration voltage and cryogenic transmission electron microscopy. The differences in chemical composition and chemical state between TD-NPs and their counterpart conventional bulk products were also found by X-ray photoelectron spectroscopy. These findings will provide basic information about the presence of NPs in nano-labeled products and be useful to understand and predict the potential toxicity of NPs applied to the food industry.

3.
Int J Mol Sci ; 22(13)2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34210022

ABSTRACT

Food additive amorphous silicon dioxide (SiO2) particles are manufactured by two different methods-precipitated and fumed procedures-which can induce different physicochemical properties and biological fates. In this study, precipitated and fumed SiO2 particles were characterized in terms of constituent particle size, hydrodynamic diameter, zeta potential, surface area, and solubility. Their fates in intestinal cells, intestinal barriers, and tissues after oral administration in rats were determined by optimizing Triton X-114-based cloud point extraction (CPE). The results demonstrate that the constituent particle sizes of precipitated and fumed SiO2 particles were similar, but their aggregate states differed from biofluid types, which also affect dissolution properties. Significantly higher cellular uptake, intestinal transport amount, and tissue accumulation of precipitated SiO2 than of fumed SiO2 was found. The intracellular fates of both types of particles in intestinal cells were primarily particle forms, but slowly decomposed into ions during intestinal transport and after distribution in the liver, and completely dissolved in the bloodstream and kidneys. These findings will provide crucial information for understanding and predicting the potential toxicity of food additive SiO2 after oral intake.


Subject(s)
Intestines/chemistry , Silicon Dioxide/administration & dosage , Silicon Dioxide/chemical synthesis , Administration, Oral , Animals , Blood Chemical Analysis , Caco-2 Cells , Cell Line, Tumor , Chemical Precipitation , Female , Humans , Intestines/cytology , Kidney/chemistry , Liver/chemistry , Nanoparticles , Octoxynol/chemistry , Particle Size , Rats , Silicon Dioxide/chemistry , Silicon Dioxide/pharmacokinetics , Solubility
4.
Int J Mol Sci ; 21(2)2020 Jan 09.
Article in English | MEDLINE | ID: mdl-31936671

ABSTRACT

(1) Background: Zinc oxide (ZnO) particles are widely used as zinc (Zn) fortifiers, because Zn is essential for various cellular functions. Nanotechnology developments may lead to production of nano-sized ZnO, although nanoparticles (NPs) are not intended to be used as food additives. Current regulations do not specify the size distribution of NPs. Moreover, ZnO is easily dissolved into Zn ions under acidic conditions. However, the fate of ZnO in commercial foods or during intestinal transit is still poorly understood. (2) Methods: We established surfactant-based cloud point extraction (CPE) for ZnO NP detection as intact particle forms using pristine ZnO-NP-spiked powdered or liquid foods. The fate determination and dissolution characterization of ZnO were carried out in commercial foods and human intestinal cells using in vitro intestinal transport and ex vivo small intestine absorption models. (3) Results: The results demonstrated that the CPE can effectively separate ZnO particles and Zn ions in food matrices and cells. The major fate of ZnO in powdered foods was in particle form, in contrast to its ionic fate in liquid beverages. The fate of ZnO was closely related to the extent of its dissolution in food or biomatrices. ZnO NPs were internalized into cells in both particle and ion form, but dissolved into ions with time, probably forming a Zn-ligand complex. ZnO was transported through intestinal barriers and absorbed in the small intestine primarily as Zn ions, but a small amount of ZnO was absorbed as particles. (4) Conclusion: The fate of ZnO is highly dependent on food matrix type, showing particle and ionic fates in powdered foods and liquid beverages, respectively. The major intracellular and intestinal absorption fates of ZnO NPs were Zn ions, but a small portion of ZnO particle fate was also observed after intestinal transit. These findings suggest that the toxicity of ZnO is mainly related to the Zn ion, but potential toxicity resulting from ZnO particles cannot be completely excluded.


Subject(s)
Food Contamination/analysis , Intestines/cytology , Zinc Oxide/analysis , Biological Transport , Caco-2 Cells , Humans , Intestinal Absorption , Intracellular Space/metabolism , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Spectrometry, X-Ray Emission
SELECTION OF CITATIONS
SEARCH DETAIL
...