Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 1275, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38341448

ABSTRACT

A tokamak relies on the axisymmetric magnetic fields to confine fusion plasmas and aims to deliver sustainable and clean energy. However, misalignments arise inevitably in the tokamak construction, leading to small asymmetries in the magnetic field known as error fields (EFs). The EFs have been a major concern in the tokamak approaches because small EFs, even less than 0.1%, can drive a plasma disruption. Meanwhile, the EFs in the tokamak can be favorably used for controlling plasma instabilities, such as edge-localized modes (ELMs). Here we show an optimization that tailors the EFs to maintain an edge 3D response for ELM control with a minimized core 3D response to avoid plasma disruption and unnecessary confinement degradation. We design and demonstrate such an edge-localized 3D response in the KSTAR facility, benefiting from its unique flexibility to change many degrees of freedom in the 3D coil space for the various fusion plasma regimes. This favorable control of the tokamak EF represents a notable advance for designing intrinsically 3D tokamaks to optimize stability and confinement for next-step fusion reactors.

2.
Rev Sci Instrum ; 92(3): 033513, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33820105

ABSTRACT

A polychrometer-type motional Stark effect (MSE) diagnostic technique, originally developed for the Alcator C-Mod tokamak, has been extended and applied to the Korea Superconducting Advanced Tokamak Research (KSTAR) device, the long-pulse superconducting tokamak, for the first time. It demonstrates a successful in situ subtraction of the polarized reflections off the vacuum vessel wall, sometimes up to half the total signal in some sightlines. To avoid the secondary neutral beam emission that may contaminate conventional beam-into-gas calibrations, a new approach, where the beam-into-gas measurements are made at various torus pressures with fixed vacuum fields, has been devised, which is possible with the stable superconducting coil systems of KSTAR. The validity of this new calibration scheme has been checked via plasma jog experiments. The experimental evidence of the polarized background light and the necessity of its correction in the MSE measurements made in KSTAR are presented as well.

3.
Phys Rev Lett ; 117(7): 075001, 2016 Aug 12.
Article in English | MEDLINE | ID: mdl-27563970

ABSTRACT

The effect of static n=1 resonant magnetic perturbation (RMP) on the spatial structure and temporal dynamics of edge-localized modes (ELMs) and edge turbulence in tokamak plasma has been investigated. Two-dimensional images measured by a millimeter-wave camera on the KSTAR tokamak revealed that the coherent filamentary modes (i.e., ELMs) are still present in the edge region when the usual large scale collapse of the edge confinement, i.e., the ELM crash, is completely suppressed by n=1 RMP. Cross-correlation analyses on the 2D images show that (1) the RMP enhances turbulent fluctuations in the edge toward the ELM-crash-suppression phase, (2) the induced turbulence has a clear dispersion relation for wide ranges of wave number and frequency, and (3) the turbulence involves a net radially outward energy transport. Nonlinear interactions of the turbulent eddies with the coexisting ELMs are clearly observed by bispectral analysis, which implies that the exchange of energy between them may be the key to the prevention of large scale crashes.

SELECTION OF CITATIONS
SEARCH DETAIL
...