Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Eng Sci Med ; 46(3): 1101-1114, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37213051

ABSTRACT

This study describes a computational analysis technique for evaluating the effect of screw spacing and angle on the pediatric hip locking plate system in proximal femoral osteotomy in pediatric patients having DDH with an aberrant femoral head and femoral angle. Under static compressive load conditions, the stresses of the screw and bone were examined as the screw spacing and angle changed. The spacing and angle of various screws were specifically considered as variables in this study based on the pile mechanism studied in civil engineering. As with the group pile mechanism, the tighter the screw spacing under static compressive loads, the more the overlapping effect between the bone stresses and the screws develops, increasing the risk of injuring the patient's bone. Therefore, a series of simulations was performed to determine the optimal screw spacing and angles to minimize the overlapping effect of bone stress. In addition, a formula for determining the minimum screw spacing was proposed based on the computational simulation results. Finally, if the outcomes of this study are applied to pediatric patients with DDH in the pre-proximal femoral osteotomy stage, post-operative load-induced femur damage will be reduced.


Subject(s)
Bone Screws , Femur , Humans , Child , Femur/surgery , Femur Head , Pressure , Osteotomy/methods
2.
Front Bioeng Biotechnol ; 10: 969636, 2022.
Article in English | MEDLINE | ID: mdl-36704311

ABSTRACT

This study replicated the behavior of intraorbital tissue in patients with thyroid eye disease (TED) based on finite element analysis for general orbital decompression risk evaluation in thyroid eye disease patients. The orbit and intraorbital tissues of thyroid eye disease patients who underwent orbital decompression were modeled as finite element models. The stress was examined at specific locations of the removed orbital wall of a thyroid eye disease patient with undergone orbital decompression, and its variation was analyzed as a function of the shape and dimension (to be removed). As a result, in orbital decompression surgery which removes the orbital wall in a rectangular shape, the stress at the orbital wall decreased as the width and depth of the removed orbital wall increased. In addition, in the case of orbital decompression, it can be seen that the chamfered model compared to the non-chamfered model (a form of general orbital decompression) have the stress reduction rate from 11.08% to 97.88%. It is inferred that if orbital decompression surgery considering the chamfered model is performed on an actual thyroid eye disease patient, it is expected that the damage to the extraocular muscle caused by the removed orbital wall will be reduced.

SELECTION OF CITATIONS
SEARCH DETAIL
...