Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
J Adv Prosthodont ; 15(5): 271-280, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37936837

ABSTRACT

PURPOSE: This in vitro study aimed to compare the accuracy of the conventional facebow system and the newly developed POP (PNUD (Pusan National University Dental School) Occlusal Plane) bow system for occlusal plane transfer in asymmetric ear position. MATERIALS AND METHODS: Two dentists participated in this study, one was categorized as Experimenter 1 and the other as Experimenter 2 based on their clinical experience with the facebow (1F, 2F) and POP bow (1P, 2P) systems. The vertical height difference between the two ears of the phantom model was set to 3 mm. Experimenter 1 and Experimenter 2 performed the facebow and POP bow systems on the phantom model 10 times each, and the transfer accuracy was analyzed. The accuracy was evaluated by measuring the angle between the reference virtual plane (RVP) of the phantom model and the experimental virtual plane (EVP) of the upper mounting plate through digital superimposition. All data were statistically analyzed using a paired t-test (P < .05). RESULTS: Regardless of clinical experience, the POP bow system (0.53° ± 0.30 (1P) and 0.19° ± 0.18 (2P) for Experimenter 1 and 2, respectively) was significantly more accurate than the facebow system (1.88° ± 0.50 (1F) and 1.34° ± 0.25 (2F), respectively) in the frontal view (P < .05). In the sagittal view, no significant differences were found between the POP bow system (0.92° ± 0.50 (1P) and 0.73° ± 0.42 (2P) for Experimenter 1 and 2, respectively) and the facebow system (0.82° ± 0.49 (1F) and 0.60° ± 0.39 (2F), respectively), regardless of clinical experience (P > .05). CONCLUSION: In cases of asymmetric ear position, the POP bow system may transfer occlusal plane information more accurately than the facebow system in the frontal view, regardless of clinical experience.

2.
J Adv Prosthodont ; 15(4): 202-213, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37662852

ABSTRACT

PURPOSE: This prospective clinical study was conducted to evaluate the clinical usefulness of the freely detachable zirconia ball- and spring-retained implant prosthesis (BSRP) through a comparative analysis of screw- and cement-retained implant prosthesis (SCRP). MATERIALS AND METHODS: A multi-center, randomized, prospective clinical study evaluating the clinical usefulness of the detachable zirconia ball- and spring-retained implant prostheses was conducted. Sixty-four implant prostheses in 64 patients were examined. Periodic observational studies were conducted at 0, 3, 6, and 12 months after delivery of the implant prosthesis. Factors such as implant success rate, marginal bone resorption, periodontal pocket depth, plaque and bleeding index, and prosthetic complications were evaluated, respectively. RESULTS: During the 1-year observation period, all implants survived without functional problems and clinical mobility, showing a 100% implant success rate. Marginal bone resorption was significantly higher in the SCRP group than in the BSRP group only at the time of implant prosthesis delivery (P = .043). In all observation periods, periodontal pocket depth was slightly higher in the BSRP group than in the SCRP group, but there was no significant difference (P > .05). The modified plaque index (mPI) scores of both groups were moderate. Higher ratio of a score 2 in modified sulcus bleeding index (mBI) was observed in the BSRP group in the 6- and 12-months observation. CONCLUSION: Within the limitations of this study, the newly developed zirconia ball- and spring-retained implant prosthesis could be considered as an applicable and predictable treatment method along with the existing screw- and cement-retained prosthesis.

3.
J Adv Prosthodont ; 15(3): 155-170, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37441720

ABSTRACT

PURPOSE: This study aims to clinically compare the fitness and trueness of zirconia crowns fabricated by different combinations of open CAD-CAM systems. MATERIALS AND METHODS: Total of 40 patients were enrolled in this study, and 9 different zirconia crowns were prepared per patient. Each crown was made through the cross-application of 3 different design software (EZIS VR, 3Shape Dental System, Exocad) with 3 different processing devices (Aegis HM, Trione Z, Motion 2). The marginal gap, absolute marginal discrepancy, internal gap(axial, line angle, occlusal) by a silicone replica technique were measured to compare the fit of the crown. The scanned inner and outer surfaces of the crowns were compared to CAD data using 3D metrology software to evaluate trueness. RESULTS: There were significant differences in the marginal gap, absolute marginal discrepancy, axial and line angle internal gap among the groups (P < .05) in the comparison of fit. There was no statistically significant difference among the groups in terms of occlusal internal gap. The trueness ranged from 36.19 to 43.78 µm but there was no statistically significant difference within the groups (P > .05). CONCLUSION: All 9 groups showed clinically acceptable level of marginal gaps ranging from 74.26 to 112.20 µm in terms of fit comparison. In the comparison of trueness, no significant difference within each group was spotted. Within the limitation of this study, open CAD-CAM systems used in this study can be assembled properly to fabricate zirconia crown.

4.
J Prosthet Dent ; 127(2): 239-247, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33246562

ABSTRACT

STATEMENT OF PROBLEM: The fit and performance of prostheses fabricated using various computer-aided design and computer-aided manufacturing (CAD-CAM) systems have been evaluated. However, most studies were conducted in vitro, and relatively few have addressed gingival parameters and prosthesis fit under clinical conditions. PURPOSE: This clinical study aimed to compare the fit of lithium disilicate crowns produced using 3 CAD-CAM systems and evaluate clinical results up to 6 months after delivery. MATERIAL AND METHODS: Forty participants requiring a single crown were recruited. Three monolithic lithium disilicate crowns were fabricated per participant by using 3 different CAD-CAM systems (intraoral scanners, CAD software, and milling machines): CEREC group (CEREC Bluecam, CEREC AC, CEREC MC); EZIS group (EZIS PO, EZIS VR, EZIS HM); and TRIOS group (TRIOS 3, EXO-CAD, ARUM-4X). The fit of the prostheses was assessed via a silicone replica technique, and the most acceptable crown was delivered; 12 were selected from the CEREC group, 16 from the EZIS group, and 12 from the TRIOS group. Follow-up clinical examinations were performed at 1, 3, and 6 months after delivery. The Kruskal-Wallis test with the post hoc Mann-Whitney U test was conducted to analyze significant differences in crown fit and periodontal conditions among the groups (α=.05). RESULTS: The marginal gap of the CEREC group was significantly higher than that of the EZIS group, and the occlusal gap of the EZIS group was significantly lower than those of the CEREC and TRIOS groups (P<.05). Probing depth, bleeding index, and plaque index showed no intergroup differences at 6 months (P>.05). CONCLUSIONS: The lithium disilicate crowns of all groups showed clinically acceptable fit. No significant differences were found among the groups in terms of periodontal conditions after 6 months.


Subject(s)
Dental Marginal Adaptation , Dental Prosthesis Design , Computer-Aided Design , Crowns , Dental Porcelain , Dental Prosthesis Design/methods , Humans
5.
Materials (Basel) ; 14(12)2021 Jun 13.
Article in English | MEDLINE | ID: mdl-34199187

ABSTRACT

This study aimed to compare two methods of crosslinking collagen type I on implanted titanium surfaces, that is, using glutaraldehyde (GA) or gamma-rays (GRs), in a beagle dog model. For in vivo experiments, implants were allocated to three groups and applied to mandibular bone defects in beagle dogs; Group SLA; non-treated Sandblasted, large grit, acid-etched (SLA) implants, Group GA; SLA implants coated with GA crosslinked collagen type I, Group GR; SLA surface implants coated with collagen type I and crosslinked using 25 kGy of 60Co gamma radiation. New bone µCT volumes were obtained, and histologic and histometric analyses were performed in regions of interest. The GR group had significantly better new bone areas (NBAs) and bone to implant contact (BIC) results than the SLA group (p < 0.05), but the GA and GR groups were similar in this respect. New bone volumes and inter-thread bone densities (ITBD) were non-significantly different in the three groups (p > 0.05). Within the limits of this study, gamma-ray collagen crosslinking on titanium implants can be considered a substitute for glutaraldehyde crosslinking.

6.
Materials (Basel) ; 14(9)2021 May 01.
Article in English | MEDLINE | ID: mdl-34062734

ABSTRACT

The aim of this study is to investigate the effect of non-thermal atmospheric pressure plasma (NTP) on retentive strength (RS) between the zirconia crown and the titanium implant abutment using self-adhesive resin cement. Surface free energy (SFE) was calculated on 24 cube-shaped zirconia blocks, and RS was measured on 120 zirconia crown-titanium abutment assemblies bonded with G-CEM LinkAce. The groups were categorized according to the zirconia surface treatment as follows: Control (no surface treatment), NTP, Si (Silane), NTP + Si, Pr (Z-Prime Plus), and NTP + Pr. Half of the RS test assemblies were aged by thermocycling for 5000 cycles at 5-55 °C. The SFE was calculated using the Owens-Wendt method, and the RS was measured using a universal testing machine at the maximum load until failure. One-way analysis of variance (ANOVA) with post-hoc Tukey honestly significant difference (HSD) was performed to evaluate the effect of surface treatments on the SFE and RS. Independent sample t-test was used to compare the RS according to thermocycling (p < 0.05). For the SFE analysis, the NTP group had a significantly higher SFE value than the Control group (p < 0.05). For the RS test, in non-thermocycling, the NTP group showed a significantly higher RS value than the Control group (p < 0.05). However, in thermocycling, there was no significant difference between the Control and NTP groups (p > 0.05). In non-thermocycling, comparing with the NTP + Si or NTP + Pr group, there was no significant difference from the Si or Pr group, respectively (p > 0.05). Conversely, in thermocycling, the NTP + Si and NTP + Pr group had significantly lower RS than the Si and Pr group, respectively (p < 0.05). These results suggest that NTP single treatment for the zirconia crown increases the initial RS but has little effect on the long-term RS. Applied with Silane or Z-Prime Plus, NTP pre-treatment has no positive effect on the RS.

7.
Materials (Basel) ; 13(20)2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33076566

ABSTRACT

The purpose of this study was to evaluate the bone regeneration efficacy of an 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)-cross-linked collagen membrane for guided bone regeneration (GBR). A non-cross-linked collagen membrane (Control group), and an EDC-cross-linked collagen membrane (Test group) were used in this study. In vitro, mechanical, and degradation testing and cell studies were performed. In the animal study, 36 artificial bone defects were formed in the mandibles of six beagles. Implants were inserted at the time of bone grafting, and membranes were assigned randomly. Eight weeks later, animals were sacrificed, micro-computed tomography was performed, and hematoxylin-eosin stained specimens were prepared. Physical properties (tensile strength and enzymatic degradation rate) were better in the Test group than in the Control group. No inflammation or membrane collapse was observed in either group, and bone volumes (%) in defects around implants were similar in the two groups (p > 0.05). The results of new bone areas (%) analysis also showed similar values in the two groups (p > 0.05). Therefore, it can be concluded that cross-linking the collagen membranes with EDC is the method of enhancing the physical properties (tensile strength and enzymatic degradation) of the collagen membranes without risk of toxicity.

8.
Materials (Basel) ; 13(18)2020 Sep 05.
Article in English | MEDLINE | ID: mdl-32899546

ABSTRACT

The purpose of this study was to investigate the effect of non-thermal atmospheric pressure plasma (NTP) treatment on the sandblasting of mechanical method and zirconia primer of chemical method used to increase the bond strength between zirconia and resin cement. In this study, Y-TZP was divided into 4 groups according to the surface treatment methods as follows: Zirconia primer (Pr), NTP + Zirconia primer (NTP + Pr), Sandblasting + Zirconia primer (Sb + Pr), Sandblasting + NTP + Zirconia primer (Sb + NTP + Pr). Then, two types of resin cement (G-CEM LinkAce and Rely X-U200) were used to measure the shear bond strength (SBS) and they were divided into non-thermal cycling group and thermal cycling group for aging effect. Statistical analyses were performed using the Kruskal-Wallis test and Mann-Whitney U test. The result of the surface energy (SE), there was no significant difference among the groups (p > 0.05). As a result of the SBS test, the Sb + Pr group had a significantly higher SBS value than the other groups regardless of the resin cement type (p < 0.05), and the decrease rate after thermal cycling treatment was the lowest. On the other hand, the NTP + Pr group showed significantly lower SBS values than the other groups except for the case of using Rely X-U200 (p < 0.05), and the reduction rate after thermal cycling was the highest. The Sb + NTP + Pr group did not differ significantly from the Pr group (p > 0.05). Within the limitations of two successive studies, treatment with NTP after sandblasting used for mechanical bond strength showed a positive effect on initial SBS. However, when NTP was treated before the zirconia primer used for the chemical bond strength, it showed a negative effect on SBS compared to other treatment methods, which was noticeable after the thermal cycling treatment.

9.
Materials (Basel) ; 12(22)2019 Nov 08.
Article in English | MEDLINE | ID: mdl-31717309

ABSTRACT

The aim of this study was to evaluate the wear properties of resin teeth with different opposing dental restorative materials. One type of resin tooth (Trubyte Biotone) was tested against six types of restorative materials including type III gold alloy (GO), monolithic zirconia (MZ), lithium disilicate glass ceramic (LD), nickel-chromium alloy (NC), feldspathic ceramic (FC), and steatite (ST). Two-body wear tests were performed under a vertical load of 5 kgf and thermo-cycling at 5/55 °C with a total of 120,000 cycles. The wear amount was quantified by measuring the volume loss of the resin teeth and the vertical substance loss of the opposing materials using three-dimensional images. The FC group showed a significantly greater amount of wear of the resin teeth, followed by the ST, NC, LD, MZ, and GO groups. The GO group showed significantly less wear of resin teeth than the other groups. There were no statistically significant differences in the wear of opposing restorative materials between groups. Within the limits of this study, it is recommended that zirconia, rather than feldspathic ceramic, should be used for restorations in the esthetic zone, and gold alloy should be used for areas with little or no esthetic demand.

10.
Materials (Basel) ; 12(20)2019 Oct 12.
Article in English | MEDLINE | ID: mdl-31614730

ABSTRACT

The purpose of this study was to evaluate the effect of non-thermal atmospheric pressure plasma (NTP) on shear bond strength (SBS) between yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) and self-adhesive resin cement. For this study, surface energy (SE) was calculated with cube-shaped Y-TZP specimens, and SBS was measured on disc-shaped Y-TZP specimens bonded with G-CEM LinkAce or RelyX U200 resin cylinder. The Y-TZP specimens were classified into four groups according to the surface treatment as follows: Control (no surface treatment), NTP, Sb (Sandblasting), and Sb + NTP. The results showed that the SE was significantly higher in the NTP group than in the Control group (p < 0.05). For the SBS test, in non-thermocycling, the NTP group of both self-adhesive resin cements showed significantly higher SBS than the Control group (p < 0.05). However, regardless of the cement type in thermocycling, there was no significant increase in the SBS between the Control and NTP groups. Comparing the two cements, regardless of thermocycling, the NTP group of G-CEM LinkAce showed significantly higher SBS than that of RelyX U200 (p < 0.05). Our study suggests that NTP increases the SE. Furthermore, NTP increases the initial SBS, which is higher when using G-CEM LinkAce than when using RelyX U200.

11.
Int J Oral Maxillofac Implants ; 33(5): 1079-1088, 2018.
Article in English | MEDLINE | ID: mdl-30231095

ABSTRACT

PURPOSE: The aim of this study was to compare the retentive properties of an attachment with a nylon insert and an attachment with a polyetherketoneketone (PEKK) insert on two-implant mandibular overdentures during simulated masticatory loadings and insertion/removal cycles. MATERIALS AND METHODS: Two attachment systems with nylon inserts or PEKK inserts were investigated, including nylon/low, nylon/medium, nylon/high, PEKK/x-low, PEKK/low, PEKK/medium, and PEKK/high. The canine region of edentulous mandibular overdenture models was retained with two implant analogs through two different stud attachments at interimplant angulations of 0 and 20 degrees. The simulated mastication and insertion/removal cycles were 400,000 cyclic loadings and 1,080 times of insertion/removal. Wear patterns and deformations on the attachment surface were analyzed with scanning electron microscopy. RESULTS: At 0 and 20 degrees, initial retentive force was highest in nylon/high and lowest in PEKK/x-low. Final retentive force was highest in PEKK/high and PEKK/medium at 0 and 20 degrees, respectively, and PEKK/x-low was lowest at both angulations. At 0 degrees, nylon/low, nylon/medium, PEKK/x-low, and PEKK/low displayed a significant increase in retention (P < .05), and nylon/high and PEKK/medium showed a significant decrease in retention (P < .05), except PEKK/high, which exhibited no significant decrease (P > .05). At 20 degrees, nylon/low and PEKK/x-low increased retention significantly (P < .05), and nylon/medium, nylon/high, PEKK/low, PEKK/medium, and PEKK/high decreased retention significantly (P < .05). Patrices of both attachment systems barely showed detectable abrasion, while matrices revealed severe wear and surface deformation. Nylon inserts particularly displayed more noticeable wear and deformation than PEKK inserts. CONCLUSION: Within the limitations of this investigation, the attachment system with a PEKK insert indicated less abrasion and retention change than the attachment system with a nylon insert on both paralleled implants and axially tilted implants under 400,000 cyclic loadings and 1,080 insertion/removal cycles for 1 year.


Subject(s)
Benzophenones/chemistry , Dental Prosthesis, Implant-Supported , Denture Retention , Denture, Overlay , Mouth, Edentulous/surgery , Nylons/chemistry , Polymers/chemistry , Tissue Scaffolds/chemistry , Dental Implants , Dental Materials , Dental Stress Analysis , Humans , Mandible/surgery
12.
Materials (Basel) ; 11(6)2018 May 29.
Article in English | MEDLINE | ID: mdl-29844270

ABSTRACT

The aim of this in-vitro research was to evaluate the microtensile bond strength in the newly introduced PEKK tooth post with various surface treatments and resin cements. A fiberglass tooth post was included in order to compare it with PEKK as a possible post material. The microtensile bond strengths of the fiberglass post (FRC Postec Plus) and the PEKK post (Pekkton®) were tested using three kinds of self-adhesive resin cements (G-CEM LinkAce, Multilink Speed, and RelyX U200) and one self-etching resin cement (PANAVIA F2.0). The surface treatments of the fiberglass posts were processed according to the manufacturer's recommendations (F1, application of 37% phosphoric acid etching gel and silanization). For the PEKK post groups, various surface treatments were performed like no surface treatment (P1), sandblasting (P2), silica-coating and silanization (P3), and sandblasting with a composite primer (P4). In the surface treatment, PEKK posts with silica coating and silane treatment (P3) showed a significantly higher microtensile bond strength (mean MPa: 18.09, p < 0.05). The highest microtensile bond strength was shown when the PEKK posts were treated with a silica coating and silane treatment and cemented with RelyX U200 (mean MPa: 22.22). The PEKK posts with surface treatments of silica-coating and silanization or sandblasting displayed superior microtensile bond strengths (mean MPa: 18.09 and 16.25, respectively) compared to the conventional fiberglass posts (mean MPa: 14.93, p < 0.05).

13.
Materials (Basel) ; 11(4)2018 Apr 06.
Article in English | MEDLINE | ID: mdl-29642407

ABSTRACT

The aim of this study was to introduce the newly developed micro-locking implant prosthetic system and to evaluate the resulting its characteristics. To evaluate load-bearing capacity, 25 implants were divided into five groups: external-hexagon connection (EH), internal-octagon connection (IO), internal-hexagon connection (IH), one-body implant (OB), micro-locking implant system (ML). The maximum compressive load was measured using a universal testing machine (UTM) according to the ISO 14801. Retention was evaluated in two experiments: (1) a tensile test of the structure modifications of the components (attachment and implant) and (2) a tensile test after cyclic loading (total 5,000,000 cycles, 100 N, 2 Hz). The load-bearing capacity of the ML group was not significantly different from the other groups (p > 0.05). The number of balls in the attachment and the presence of a hexagonal receptacle did not show a significant correlation with retention (p > 0.05), but the shape of the retentive groove in the implant post had a statistically significant effect on retention (p < 0.05). On the other hand, the retention loss was observed during the initial 1,000,000 cycles, but an overall constant retention was maintained afterward. Various preclinical studies on this novel micro-locking implant prosthetic system should continue so that it can be applied in clinical practice.

14.
J Adv Prosthodont ; 9(5): 341-349, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29142641

ABSTRACT

PURPOSE: This study evaluated the accuracies of different bite registration techniques for implant-fixed prostheses using three dimensional file analysis. MATERIALS AND METHODS: Implant fixtures were placed on the mandibular right second premolar, and the first and second molar in a polyurethane model. Aluwax (A), Pattern Resin (P), and Blu-Mousse (B) were used as the bite registration materials on the healing abutments (H) or temporary abutments (T). The groups were classified into HA, HP, HB, TA, TP, and TB according to each combination. The group using the bite impression coping was the BC group; impression taking and bite registration were performed simultaneously. After impression and bite taking, the scan bodies were connected to the lab analogs of the casts. These casts were scanned using a model scanner. The distances between two reference points in three-dimensional files were measured in each group. One-way ANOVA and Duncan's test were used at the 5% significance level. RESULTS: The smallest distance discrepancy was observed in the TB group using the temporary abutments. The Blu-Mousse and HP groups showed the largest distance discrepancy. The TB and BC groups showed a lower distance discrepancy than the HP group (P=.001), and there was no significant difference between the groups using the temporary abutments and healing abutments (P>.05). CONCLUSION: Although this study has limitations as an in-vitro investigation, the groups using the temporary abutments to hold the Blu-Mousse record and bite impression coping showed greater accuracy than the group using the healing abutments to hold the pattern resin record.

15.
Biomed Mater ; 13(1): 015014, 2017 12 15.
Article in English | MEDLINE | ID: mdl-29155411

ABSTRACT

The appropriate porosity and pore size of barrier membranes were associated with the transportation of biomolecules required for new bone formation and angiogenesis. In this study, we fabricated three-dimensional (3D)-printed resorbable polycaprolactone (PCL) membranes with different porosities (30%, 50%, and 70%) to evaluate the effective pore size for guided bone regeneration (GBR) membranes. To analyze mechanical properties and cytocompatibility, PCL membranes prepared using extrusion-based 3D printing technology were compared in dry and wet conditions and tested in vitro. The proliferation rates and pattern of fibroblasts and preosteoblasts on PCL membranes with different porosities were determined using a cell counting kit-8 assay and scanning electron microscopy. PCL membrane porosity did not affect cell proliferation, but osteogenic differentiation and mechanical properties were increased with lower porosity (30%) on day 14 (p < 0.001). Similar results were found in an in vivo calvarial defect model; new bone formation was significantly higher in PCL membranes with lower porosity (p < 0.001). These results indicate that 3D-printed PCL with 30% porosity (130 µm pore size) is an excellent pore size for GBR membranes.


Subject(s)
Biocompatible Materials/pharmacology , Bone Regeneration/drug effects , Osteogenesis/drug effects , Polyesters/chemistry , Animals , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Durapatite/pharmacology , Male , Mice , Microscopy, Electron, Scanning , NIH 3T3 Cells , Porosity , Printing, Three-Dimensional , Rabbits , Stress, Mechanical , Tissue Engineering/methods , Tissue Scaffolds , X-Ray Microtomography
16.
Int J Mol Sci ; 18(11)2017 Oct 25.
Article in English | MEDLINE | ID: mdl-29068426

ABSTRACT

Bacterial cellulose (BC) is an excellent biomaterial with many medical applications. In this study, resorbable BC membranes were prepared for guided bone regeneration (GBR) using an irradiation technique for applications in the dental field. Electron beam irradiation (EI) increases biodegradation by severing the glucose bonds of BC. BC membranes irradiated at 100 kGy or 300 kGy were used to determine optimal electron beam doses. Electron beam irradiated BC membranes (EI-BCMs) were evaluated by scanning electron microscopy (SEM), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, thermal gravimetric analysis (TGA), and using wet tensile strength measurements. In addition, in vitro cell studies were conducted in order to confirm the cytocompatibility of EI-BCMs. Cell viabilities of NIH3T3 cells on 100k and 300k EI-BCMs (100 kGy and 300 kGy irradiated BC membranes) were significantly greater than on NI-BCMs after 3 and 7 days (p < 0.05). Bone regeneration by EI-BCMs and their biodegradabilities were also evaluated using in vivo rat calvarial defect models for 4 and 8 weeks. Histometric results showed 100k EI-BCMs exhibited significantly larger new bone area (NBA; %) than 300k EI-BCMs at 8 weeks after implantation (p < 0.05). Mechanical, chemical, and biological analyses showed EI-BCMs effectively interacted with cells and promoted bone regeneration.


Subject(s)
Biocompatible Materials/chemistry , Bone Regeneration , Cellulose/radiation effects , Guided Tissue Regeneration/methods , Animals , Bacteria/chemistry , Cell Survival , Electrons , Male , Materials Testing , Mice , Microscopy, Electron, Scanning , NIH 3T3 Cells , Rats , Rats, Sprague-Dawley , Spectroscopy, Fourier Transform Infrared , Tensile Strength
17.
Biomed Res Int ; 2017: 7102123, 2017.
Article in English | MEDLINE | ID: mdl-29018818

ABSTRACT

The purpose of this study is to evaluate the effect of three-dimensional preformed titanium membrane (3D-PFTM) to enhance mechanical properties and ability of bone regeneration on the peri-implant bone defect. 3D-PFTMs by new mechanically compressive molding technology and manually shaped- (MS-) PFTMs by hand manipulation were applied in artificial peri-implant bone defect model for static compressive load test and cyclic fatigue load test. In 12 implants installed in the mandibular of three beagle dogs, six 3D-PFTMs, and six collagen membranes (CM) randomly were applied to 2.5 mm peri-implant buccal bone defect with particulate bone graft materials for guided bone regeneration (GBR). The 3D-PFTM group showed about 7.4 times higher mechanical stiffness and 5 times higher fatigue resistance than the MS-PFTM group. The levels of the new bone area (NBA, %), the bone-to-implant contact (BIC, %), distance from the new bone to the old bone (NB-OB, %), and distance from the osseointegration to the old bone (OI-OB, %) were significantly higher in the 3D-PFTM group than the CM group (p < .001). It was verified that the 3D-PFTM increased mechanical properties which were effective in supporting the space maintenance ability and stabilizing the particulate bone grafts, which led to highly efficient bone regeneration.


Subject(s)
Alveolar Bone Loss/drug therapy , Alveolar Process/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Bone Regeneration/drug effects , Titanium/chemistry , Titanium/pharmacology , Absorbable Implants , Alveolar Bone Grafting/methods , Alveolar Bone Loss/metabolism , Alveolar Process/metabolism , Animals , Bone Substitutes/pharmacology , Bone Transplantation/methods , Collagen/metabolism , Dental Implantation, Endosseous/methods , Dental Implants , Dogs , Guided Tissue Regeneration, Periodontal/methods , Membranes, Artificial , Osseointegration/drug effects
18.
Int J Mol Sci ; 18(8)2017 Aug 08.
Article in English | MEDLINE | ID: mdl-28786931

ABSTRACT

This study was conducted to evaluate the effect of biphasic calcium phosphate (BCP) coated with reduced graphene oxide (rGO) as bone graft materials on bone regeneration. The rGO-coated BCP bone graft material was fabricatied by mixing rGO and BCP at various concentrations. The surface charge of rGO-coated BCP was measured to be -14.43 mV, which formed a static electrostatic interaction. Cell viabilities were significantly diminished at higher concentrations of ≥100 µg/mL. The calvarial defects of 48 rats were implanted rGO-coated BCPs at a weight ratio of 2:1000 (rGO2), 4:1000 (rGO4), and 10:1000 (rGO10), repectively. BCP was used as a control group. The micro-CT and histological analysis were performed to evaluate new bone formation at 2 and 8 weeks after surgery. The results showed that the new bone volume (mm³) was significantly higher in the experimental groups than in the control group. Histological analysis showed that new bone areas (%) were significantly higher in the rGO2 and rGO10 than in the control, and significantly higher in rGO4 than in the rGO2 and rGO10. Conclusively, the rGO-coated BCP was found to be effective on osteogenesis and the concentration of the composite was an important factor.


Subject(s)
Bone Regeneration , Bone Substitutes , Coated Materials, Biocompatible , Graphite/chemistry , Hydroxyapatites/chemistry , Osteogenesis , Oxides , Animals , Bone Substitutes/chemistry , Bone Transplantation , Cell Line , Cell Survival , Male , Osteoblasts/cytology , Osteoblasts/metabolism , Oxides/chemistry , Rats , X-Ray Microtomography
19.
Materials (Basel) ; 10(1)2017 Jan 01.
Article in English | MEDLINE | ID: mdl-28772381

ABSTRACT

In this study, bisphasic calcium phosphate (BCP) and two types of polysaccharide, carboxymethyl cellulose (CMC) and hyaluronic acid (HyA), were used to fabricate composite block bone grafts, and their physical and biological features and performances were compared and evaluated in vitro and in vivo. Specimens of the following were prepared as 6 mm diameter, 2 mm thick discs; BPC mixed with CMC (the BCP/CMC group), BCP mixed with crosslinked CMC (the BCP/c-CMC group) and BCP mixed with HyA (the BCP/HyA group) and a control group (specimens were prepared using particle type BCP). A scanning electron microscope study, a compressive strength analysis, and a cytotoxicity assessment were conducted. Graft materials were implanted in each of four circular defects of 6 mm diameter in calvarial bone in seven rabbits. Animals were sacrificed after four weeks for micro-CT and histomorphometric analyses, and the findings obtained were used to calculate new bone volumes (mm³) and area percentages (%). It was found that these two values were significantly higher in the BCP/c-CMC group than in the other three groups (p < 0.05). Within the limitations of this study, BCP composite block bone graft material incorporating crosslinked CMC has potential utility when bone augmentation is needed.

20.
Materials (Basel) ; 10(4)2017 Apr 17.
Article in English | MEDLINE | ID: mdl-28772780

ABSTRACT

The purpose of this study was to compare bone regeneration and space maintaining ability of three-dimensional (3D) printed bone grafts with conventional biphasic calcium phosphate (BCP). After mixing polycaprolactone (PCL), poly (lactic-co-glycolic acid) (PLGA), and ß-tricalcium phosphate (ß-TCP) in a 4:4:2 ratio, PCL/PLGA/ß-TCP particulate bone grafts were fabricated using 3D printing technology. Fabricated particulate bone grafts were mixed with atelocollagen to produce collagen-based PCL/PLGA/ß-TCP composite block bone grafts. After formation of calvarial defects 8 mm in diameter, PCL/PLGA/ß-TCP composite block bone grafts and BCP were implanted into bone defects of 32 rats. Although PCL/PLGA/ß-TCP composite block bone grafts were not superior in bone regeneration ability compared to BCP, the results showed relatively similar performance. Furthermore, PCL/PLGA/ß-TCP composite block bone grafts showed better ability to maintain bone defects and to support barrier membranes than BCP. Therefore, within the limitations of this study, PCL/PLGA/ß-TCP composite block bone grafts could be considered as an alternative to synthetic bone grafts available for clinical use.

SELECTION OF CITATIONS
SEARCH DETAIL
...