Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 52(3): 1525-1532, 2018 02 06.
Article in English | MEDLINE | ID: mdl-29261292

ABSTRACT

The disinfection of drinking water has been a major public health achievement. However, haloacetic acids (HAAs), generated as byproducts of water disinfection, are cytotoxic, genotoxic, mutagenic, carcinogenic, and teratogenic. Previous studies of monoHAA-induced genotoxicity and cell stress demonstrated that the toxicity was due to inhibition of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), leading to disruption of cellular metabolism and energy homeostasis. DiHAAs and triHAAs are also produced during water disinfection, and whether they share mechanisms of action with monoHAAs is unknown. In this study, we evaluated the effects of mono-, di-, and tri-HAAs on cellular GAPDH enzyme kinetics, cellular ATP levels, and pyruvate dehydrogenase complex (PDC) activity. Here, treatments conducted in Chinese hamster ovary (CHO) cells revealed differences among mono-, di-, and triHAAs in their molecular targets. The monoHAAs, iodoacetic acid and bromoacetic acid, were the strongest inhibitors of GAPDH and greatly reduced cellular ATP levels. Chloroacetic acid, diHAAs, and triHAAs were weaker inhibitors of GAPDH and some increased the levels of cellular ATP. HAAs also affected PDC activity, with most HAAs activating PDC. The primary finding of this work is that mono- versus multi-HAAs address different molecular targets, and the results are generally consistent with a model in which monoHAAs activate the PDC through GAPDH inhibition-mediated disruption in cellular metabolites, including altering ATP-to-ADP and NADH-to-NAD ratios. The monoHAA-mediated reduction in cellular metabolites results in accelerated PDC activity by way of metabolite-ratio-dependent PDC regulation. DiHAAs and triHAAs are weaker inhibitors of GAPDH, but many also increase cellular ATP levels, and we suggest that they increase PDC activity by inhibiting pyruvate dehydrogenase kinase.


Subject(s)
Disinfection , Oxidoreductases , Animals , CHO Cells , Cricetinae , Cricetulus , Pyruvates
2.
J Environ Sci (China) ; 58: 173-182, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28774606

ABSTRACT

The presence of iodinated X-ray contrast media (ICM) in source waters is of high concern to public health because of their potential to generate highly toxic disinfection by-products (DBPs). The objective of this study was to determine the impact of ICM in source waters and the type of disinfectant on the overall toxicity of DBP mixtures and to determine which ICM and reaction conditions give rise to toxic by-products. Source waters collected from Akron, OH were treated with five different ICMs, including iopamidol, iopromide, iohexol, diatrizoate and iomeprol, with or without chlorine or chloramine disinfection. The reaction product mixtures were concentrated with XAD resins and the mammalian cell cytotoxicity and genotoxicity of the reaction mixture concentrates was measured. Water containing iopamidol generated an enhanced level of mammalian cell cytotoxicity and genotoxicity after disinfection. While chlorine disinfection with iopamidol resulted in the highest cytotoxicity overall, the relative iopamidol-mediated increase in toxicity was greater when chloramine was used as the disinfectant compared with chlorine. Four other ICMs (iopromide, iohexol, diatrizoate, and iomeprol) expressed some cytotoxicity over the control without any disinfection, and induced higher cytotoxicity when chlorinated. Only iohexol enhanced genotoxicity compared to the chlorinated source water.


Subject(s)
Contrast Media/analysis , Disinfectants/analysis , Drinking Water/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods , Contrast Media/chemistry , Disinfectants/toxicity , Disinfection/methods , Halogenation , Iohexol/analogs & derivatives , Iohexol/analysis , Iohexol/chemistry , Iopamidol/analogs & derivatives , Iopamidol/analysis , Iopamidol/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/toxicity , X-Rays
3.
Reprod Toxicol ; 62: 71-6, 2016 07.
Article in English | MEDLINE | ID: mdl-27151372

ABSTRACT

Water disinfection greatly reduced the incidence of waterborne diseases, but the reaction between disinfectants and natural organic matter in water leads to the formation of drinking water disinfection by-products (DBPs). DBPs have been shown to be toxic, but their effects on the ovary are not well defined. This study tested the hypothesis that monohalogenated DBPs (chloroacetic acid, CAA; bromoacetic acid, BAA; iodoacetic acid, IAA) inhibit antral follicle growth and steroidogenesis in mouse ovarian follicles. Antral follicles were isolated and cultured with either vehicle or DBPs (0.25-1.00mM of CAA; 2-15µM of BAA or IAA) for 48 and 96h. Follicle growth was measured every 24h and the media were analyzed for estradiol levels at 96h. Exposure to DBPs significantly inhibited antral follicle growth and reduced estradiol levels compared to controls. These data demonstrate that DBP exposure caused ovarian toxicity in vitro.


Subject(s)
Acetates/toxicity , Estradiol/metabolism , Iodoacetic Acid/toxicity , Ovarian Follicle/drug effects , Water Pollutants, Chemical/toxicity , Animals , Disinfection , Female , Mice , Ovarian Follicle/growth & development , Ovarian Follicle/metabolism , Water Purification
4.
Environ Sci Technol ; 49(23): 13749-59, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-25942416

ABSTRACT

The introduction of drinking water disinfection greatly reduced waterborne diseases. However, the reaction between disinfectants and natural organic matter in the source water leads to an unintended consequence, the formation of drinking water disinfection byproducts (DBPs). The haloacetaldehydes (HALs) are the third largest group by weight of identified DBPs in drinking water. The primary objective of this study was to analyze the occurrence and comparative toxicity of the emerging HAL DBPs. A new HAL DBP, iodoacetaldehyde (IAL) was identified. This study provided the first systematic, quantitative comparison of HAL toxicity in Chinese hamster ovary cells. The rank order of HAL cytotoxicity is tribromoacetaldehyde (TBAL) ≈ chloroacetaldehyde (CAL) > dibromoacetaldehyde (DBAL) ≈ bromochloroacetaldehyde (BCAL) ≈ dibromochloroacetaldehyde (DBCAL) > IAL > bromoacetaldehyde (BAL) ≈ bromodichloroacetaldehyde (BDCAL) > dichloroacetaldehyde (DCAL) > trichloroacetaldehyde (TCAL). The HALs were highly cytotoxic compared to other DBP chemical classes. The rank order of HAL genotoxicity is DBAL > CAL ≈ DBCAL > TBAL ≈ BAL > BDCAL>BCAL ≈ DCAL>IAL. TCAL was not genotoxic. Because of their toxicity and abundance, further research is needed to investigate their mode of action to protect the public health and the environment.


Subject(s)
Disinfectants/analysis , Disinfectants/toxicity , Drinking Water/analysis , Toxicity Tests/methods , Acetaldehyde/analogs & derivatives , Acetaldehyde/analysis , Acetaldehyde/chemistry , Acetaldehyde/toxicity , Animals , CHO Cells/drug effects , Cricetinae , Cricetulus , DNA Damage/drug effects , Disinfectants/chemistry , Disinfection/methods , Mutagenicity Tests/methods , Reproducibility of Results , Structure-Activity Relationship , Water Purification/methods
5.
Environ Mol Mutagen ; 54(8): 629-37, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23893730

ABSTRACT

Monohaloacetic acids (monoHAAs) are a major class of drinking water disinfection by-products (DBPs) and are cytotoxic, genotoxic, mutagenic, and teratogenic. We propose a model of toxic action based on monoHAA-mediated inhibition of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a target cytosolic enzyme. This model predicts that GAPDH inhibition by the monoHAAs will lead to a severe reduction of cellular ATP levels and repress the generation of pyruvate. A loss of pyruvate will lead to mitochondrial stress and genomic DNA damage. We found a concentration-dependent reduction of ATP in Chinese hamster ovary cells after monoHAA treatment. ATP reduction per pmol monoHAA followed the pattern of iodoacetic acid (IAA) > bromoacetic acid (BAA) >> chloroacetic acid (CAA), which is the pattern of potency observed with many toxicological endpoints. Exogenous supplementation with pyruvate enhanced ATP levels and attenuated monoHAA-induced genomic DNA damage as measured with single cell gel electrophoresis. These data were highly correlated with the SN 2 alkylating potentials of the monoHAAs and with the induction of toxicity. The results from this study strongly support the hypothesis that GAPDH inhibition and the possible subsequent generation of reactive oxygen species is linked with the cytotoxicity, genotoxicity, teratogenicity, and neurotoxicity of these DBPs.


Subject(s)
Acetates/toxicity , DNA Damage/drug effects , Disinfection , Pyruvic Acid/pharmacology , Water Pollutants, Chemical/toxicity , Water Purification , Acetates/chemistry , Adenosine Triphosphate/metabolism , Animals , CHO Cells , Cell Survival/drug effects , Comet Assay , Cricetinae , Cricetulus , Drinking Water/chemistry , Proteins/metabolism
6.
Environ Sci Technol ; 46(21): 12120-8, 2012 Nov 06.
Article in English | MEDLINE | ID: mdl-22958121

ABSTRACT

The HIWATE (Health Impacts of long-term exposure to disinfection byproducts in drinking WATEr) project was a systematic analysis that combined the epidemiology on adverse pregnancy outcomes and other health effects with long-term exposure to low levels of drinking water disinfection byproducts (DBPs) in the European Union. The present study focused on the relationship of the occurrence and concentration of DBPs with in vitro mammalian cell toxicity. Eleven drinking water samples were collected from five European countries. Each sampling location corresponded with an epidemiological study for the HIWATE program. Over 90 DBPs were identified; the range in the number of DBPs and their levels reflected the diverse collection sites, different disinfection processes, and the different characteristics of the source waters. For each sampling site, chronic mammalian cell cytotoxicity correlated highly with the numbers of DBPs identified and the levels of DBP chemical classes. Although there was a clear difference in the genotoxic responses among the drinking waters, these data did not correlate as well with the chemical analyses. Thus, the agents responsible for the genomic DNA damage observed in the HIWATE samples may be due to unresolved associations of combinations of identified DBPs, unknown emerging DBPs that were not identified, or other toxic water contaminants. This study represents the first to integrate quantitative in vitro toxicological data with analytical chemistry and human epidemiologic outcomes for drinking water DBPs.


Subject(s)
Disinfection , Drinking Water/analysis , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Animals , CHO Cells , Cell Survival/drug effects , Cricetinae , Cricetulus , DNA Damage , Environmental Monitoring , Europe/epidemiology , Female , Humans , Pregnancy , Pregnancy Outcome/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...