Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Stem Cell Res ; 77: 103416, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38615589

ABSTRACT

A human induced pluripotent stem cell (iPSC) line (KKUi002-A) was generated from a skin fibroblast of a 57-years-old (at sampling) male patient diagnosed with a sporadic Parkinson's disease (PD). A non-integration system was used to reprogram fibroblasts into iPSCs by an episomal vector (OCT4/p53, SOX2/KLF4, L-MYC/LIN28). The KKUi002-A iPSCs displayed typical iPSC morphology, expressed pluripotency markers, differentiated into derivatives of three germ layers, and had a normal karyotype. These PD-derived iPSCs can be used to understand the mechanism underlying PD pathogenesis.


Subject(s)
Induced Pluripotent Stem Cells , Kruppel-Like Factor 4 , Parkinson Disease , Humans , Induced Pluripotent Stem Cells/metabolism , Parkinson Disease/pathology , Male , Middle Aged , Cell Differentiation , Fibroblasts/metabolism , Fibroblasts/pathology , Cellular Reprogramming , Cell Line
2.
Drug Saf ; 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38512445

ABSTRACT

INTRODUCTION: Angiotensin receptor blockers are widely used antihypertensive drugs in South Korea. In 2021, the Korea Ministry of Food and Drug Safety acknowledged the need for national compensation for a drug-induced liver injury (DILI) after azilsartan use. However, little is known regarding the association between angiotensin receptor blockers and DILI. OBJECTIVE: We conducted a retrospective cohort study in incident users of angiotensin receptor blockers from a common data model database (1 January, 2017-31 December, 2021) to compare the risk of DILI among specific angiotensin receptor blockers against valsartan. METHODS: Patients were assigned to treatment groups at cohort entry based on prescribed angiotensin receptor blockers. Drug-induced liver injury was operationally defined using the International DILI Expert Working Group criteria. Cox regression analyses were conducted to derive hazard ratios and the inverse probability of treatment weighting method was applied. All analyses were performed using R. RESULTS: In total, 229,881 angiotensin receptor blocker users from 20 university hospitals were included. Crude DILI incidence ranged from 15.6 to 82.8 per 1000 person-years in treatment groups, most were cholestatic and of mild severity. Overall, the risk of DILI was significantly lower in olmesartan users than in valsartan users (hazard ratio: 0.73 [95% confidence interval 0.55-0.96]). In monotherapy patients, the risk was significantly higher in azilsartan users than in valsartan users (hazard ratio: 6.55 [95% confidence interval 5.28-8.12]). CONCLUSIONS: We found a significantly higher risk of suspected DILI in patients receiving azilsartan monotherapy compared with valsartan monotherapy. Our findings emphasize the utility of real-world evidence in advancing our understanding of adverse drug reactions in clinical practice.

3.
Int J Mol Sci ; 24(17)2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37686120

ABSTRACT

Macrophages are the major primary immune cells that mediate the inflammatory response. In this process, long non-coding RNAs (lncRNAs) play an important, yet largely unknown role. Therefore, utilizing several publicly available RNA sequencing datasets, we predicted and selected lncRNAs that are differentially expressed in M1 or M2 macrophages and involved in the inflammatory response. We identified SUGCT-AS1, which is a human macrophage-specific lncRNA whose expression is increased upon M1 macrophage stimulation. Conditioned media of SUGCT-AS1-depleted M1 macrophages induced an inflammatory phenotype of vascular smooth muscle cells, which included increased expression of inflammatory genes (IL1B and IL6), decreased contractile marker proteins (ACTA2 and SM22α), and increased cell migration. Depletion of SUGCT-AS1 promoted the expression and secretion of proinflammatory cytokines, such as TNF, IL1B, and IL6, in M1 macrophages, and transcriptomic analysis showed that SUGCT-AS1 has functions related to inflammatory responses and cytokines. Furthermore, we found that SUGCT-AS1 directly binds to hnRNPU and regulates its nuclear-cytoplasmic translocation. This translocation of hnRNPU altered the proportion of the MALT1 isoforms by regulating the alternative splicing of MALT1, a mediator of NF-κB signaling. Overall, our findings suggest that lncRNAs can be used for future studies on macrophage regulation. Moreover, they establish the SUGCT-AS1/hnRNPU/MALT1 axis, which is a novel inflammatory regulatory mechanism in macrophages.


Subject(s)
RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Interleukin-6/genetics , Alternative Splicing , Contractile Proteins , Cytokines/genetics , Macrophages
4.
Biol Direct ; 18(1): 32, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37322541

ABSTRACT

Adipose tissue, an organ critical for systemic energy homeostasis, is influenced by type 2 immunity in its development and function. The type 2 cytokine interleukin (IL)-4 induces the proliferation of bipotential adipocyte precursors (APs) in white fat tissue and primes these cells for differentiation into beige adipocytes, which are specialized for thermogenesis. However, the underlying mechanisms have not yet been comprehensively examined. Here, we identified six microRNA (miRNA) genes upregulated upon IL-4 stimulation in APs, miR-322, miR-503, miR-351, miR-542, miR-450a, and miR-450b; these are encoded in the H19X locus of the genome. Their expression is positively regulated by the transcription factor Klf4, whose expression also increases upon IL-4 stimulation. These miRNAs shared a large set of target genes, of which 381 genes were downregulated in mRNA expression upon IL-4 stimulation and enriched in Wnt signaling pathways. Two genes with downregulated expression, Ccnd1 and Fzd6, were repressed by H19X-encoded miRNAs. Additionally, the Wnt signaling activator LiCl downregulated the expression of this group of miRNAs in APs, indicating that Wnt signaling-related genes and these miRNAs form a double-negative feedback regulatory loop. This miRNA/Wnt feedback regulation modulated the elevated proliferation of APs induced by IL-4 stimulation and contributed to priming them for beige adipocyte differentiation. Moreover, the aberrant expression of these miRNAs attenuates the differentiation of APs into beige adipocytes. Collectively, our results suggest that H19X-encoded miRNAs facilitate the transition of APs from proliferation to differentiation in the IL-4-mediated regulation.


Subject(s)
MicroRNAs , MicroRNAs/genetics , MicroRNAs/metabolism , Interleukin-4/metabolism , Cell Differentiation/genetics , Adipocytes/metabolism , Cell Proliferation
5.
Mol Cells ; 46(4): 209-218, 2023 Apr 30.
Article in English | MEDLINE | ID: mdl-36852435

ABSTRACT

In induced pluripotent stem cells (iPSCs), pluripotency is induced artificially by introducing the transcription factors Oct4, Sox2, Klf4, and c-Myc. When a transgene is introduced using a viral vector, the transgene may be integrated into the host genome and cause a mutation and cancer. No integration occurs when an episomal vector is used, but this method has a limitation in that remnants of the virus or vector remain in the cell, which limits the use of such iPSCs in therapeutic applications. Chemical reprogramming, which relies on treatment with small-molecule compounds to induce pluripotency, can overcome this problem. In this method, reprogramming is induced according to the gene expression pattern of extra-embryonic endoderm (XEN) cells, which are used as an intermediate stage in pluripotency induction. Therefore, iPSCs can be induced only from established XEN cells. We induced XEN cells using small molecules that modulate a signaling pathway and affect epigenetic modifications, and devised a culture method in which can be produced homogeneous XEN cells. At least 4 passages were required to establish morphologically homogeneous chemically induced XEN (CiXEN) cells, whose properties were similar to those of XEN cells, as revealed through cellular and molecular characterization. Chemically iPSCs derived from CiXEN cells showed characteristics similar to those of mouse embryonic stem cells. Our results show that the homogeneity of CiXEN cells is critical for the efficient induction of pluripotency by chemicals.


Subject(s)
Induced Pluripotent Stem Cells , Animals , Mice , Cellular Reprogramming , Mouse Embryonic Stem Cells , Epigenesis, Genetic
6.
Int J Stem Cells ; 16(1): 27-35, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36581367

ABSTRACT

Background and Objectives: Spermatogonial stem cells (SSCs) are the most primitive cells in spermatogenesis and are the only adult stem cells capable of passing on the genome of a given species to the next generation. SSCs are the only adult stem cells known to exhibit high Oct4 expression and can be induced to self-reprogram into pluripotent cells depending on culture conditions. Epigenetic modulation is well known to be involved in the induction of pluripotency of somatic cells. However, epigenetic modulation in self-reprogramming of SSCs into pluripotent cells has not been studied. Methods and Results: In this study, we examined the involvement of epigenetic modulation by assessing whether self-reprogramming of SSCs is enhanced by treatment with epigenetic modulators. We found that second-generation selective class I HDAC inhibitors increased SSC reprogramming efficiency, whereas non-selective HDAC inhibitors had no effect. Conclusions: We showed that pluripotent stem cells derived from adult SSCs by treatment with small molecules with epigenetic modulator functions exhibit pluripotency in vitro and in vivo. Our results suggest that the mechanism of SSC reprogramming by epigenetic modulator can be used for important applications in epigenetic reprogramming research.

7.
Front Cell Dev Biol ; 11: 1223987, 2023.
Article in English | MEDLINE | ID: mdl-38379959

ABSTRACT

Neural stem cells (NSCs) are defined by their ability to self-renew and generate various cell types within the nervous system. Understanding the underlying mechanism by which NSCs proliferate and differentiate is crucial for the efficient modulation of in vivo neurogenesis. MicroRNAs are small non-coding RNAs controlling gene expression concerned in post-transcriptional control by blocking messenger RNA (mRNA) translation or degrading mRNA. MicroRNAs play a role as modulators by matching target mRNAs. Recent studies have discussed the biological mechanism of microRNA regulation in neurogenesis. To investigate the role of microRNAs in NSCs and NSC-derived glial cells, we screened out NSC-specific microRNAs by using miRNome-wide screening. Then, we induced downregulation by the sponge against the specific microRNA to evaluate the functional role of the microRNA in proliferation, differentiation, and apoptosis in NSCs and NSC-derived astrocytes. We found that microRNA-325-3p is highly expressed in NSCs and astrocytes. Furthermore, we showed that microRNA-325-3p is a regulator of apoptosis by targeting brain-specific angiogenesis inhibitor (BAI1), which is a receptor for apoptotic cells and expressed in the brain and cultured astrocytes. Downregulation of microRNA-325-3p using an inducible sponge system induced cell death by regulating BAI1 in NSCs and NSC-derived astrocytes. Overall, our findings can provide an insight into the potential roles of NSC-specific microRNAs in brain neurogenesis and suggest the possible usage of the microRNAs as biomarkers of neurodegenerative disease.

8.
Sensors (Basel) ; 22(14)2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35891041

ABSTRACT

With the recent increase in intelligent CCTVs for visual surveillance, a new image degradation that integrates resolution conversion and synthetic rain models is required. For example, in heavy rain, face images captured by CCTV from a distance have significant deterioration in both visibility and resolution. Unlike traditional image degradation models (IDM), such as rain removal and super resolution, this study addresses a new IDM referred to as a scale-aware heavy rain model and proposes a method for restoring high-resolution face images (HR-FIs) from low-resolution heavy rain face images (LRHR-FI). To this end, a two-stage network is presented. The first stage generates low-resolution face images (LR-FIs), from which heavy rain has been removed from the LRHR-FIs to improve visibility. To realize this, an interpretable IDM-based network is constructed to predict physical parameters, such as rain streaks, transmission maps, and atmospheric light. In addition, the image reconstruction loss is evaluated to enhance the estimates of the physical parameters. For the second stage, which aims to reconstruct the HR-FIs from the LR-FIs outputted in the first stage, facial component-guided adversarial learning (FCGAL) is applied to boost facial structure expressions. To focus on informative facial features and reinforce the authenticity of facial components, such as the eyes and nose, a face parsing-guided generator and facial local discriminators are designed for FCGAL. The experimental results verify that the proposed approach based on a physical-based network design and FCGAL can remove heavy rain and increase the resolution and visibility simultaneously. Moreover, the proposed heavy rain face image restoration outperforms state-of-the-art models of heavy rain removal, image-to-image translation, and super resolution.


Subject(s)
Image Processing, Computer-Assisted , Rain , Image Processing, Computer-Assisted/methods
9.
Cell Biol Int ; 46(1): 139-147, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34694043

ABSTRACT

Stem cells are an important therapeutic source for recovery and regeneration, as their ability of self-renewal and differentiation offers an unlimited supply of highly specialized cells for therapeutic transplantation. Growth factors and serum are essential for maintaining the characteristics of stem cells in culture and for inducing differentiation. Because growth factors are produced mainly in bacterial (Escherichia coli) or animal cells, the use of such growth factors raises safety concerns that need to be resolved for the commercialization of stem cell therapeutics. To overcome this problem, studies on proteins produced in plants have been conducted. Here, we describe the functions of plant-derived fibroblast growth factor 2 (FGF2) and human serum albumin in the maintenance and differentiation of human-induced pluripotent stem cells (hiPSCs). Plant-derived FGF2 and human epidermal growth factor EGF were able to differentiate hiPSCs into neural stem cells (NSCs). These NSCs could differentiate into neuronal and glial cells. Our results imply that culturing stem cells in animal-free culture medium, which is composed of plant-derived proteins, would facilitate stem cell application research, for example, for cell therapy, by reducing contamination risk.


Subject(s)
Epidermal Growth Factor/pharmacology , Fibroblast Growth Factor 2/pharmacology , Induced Pluripotent Stem Cells/drug effects , Neural Stem Cells/drug effects , Neurogenesis/drug effects , Serum Albumin, Human/pharmacology , Animals , Cell Line , Epidermal Growth Factor/genetics , Epidermal Growth Factor/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/pharmacology , Fibroblast Growth Factor 2/genetics , Fibroblast Growth Factor 2/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Mice, Inbred NOD , Mice, SCID , Neural Stem Cells/metabolism , Oryza/genetics , Oryza/metabolism , Phenotype , Plant Proteins/pharmacology , Recombinant Proteins/pharmacology , Serum Albumin, Human/genetics , Serum Albumin, Human/metabolism
10.
Antioxidants (Basel) ; 10(4)2021 Mar 27.
Article in English | MEDLINE | ID: mdl-33801741

ABSTRACT

Metastasis is the main cause of cancer-related death. Despite its high fatality, a comprehensive study that covers anti-metastasis of herbal medicines has not yet been conducted. The aim of this study is to investigate and assess the anti-metastatic efficacies of herbal medicines in the five major cancers, including lung, colorectal, gastric, liver, and breast cancers. We collected articles published within five years using PubMed, Google Scholar, and Web of Science with "cancer metastasis" and "herbal medicine" as keywords. Correspondingly, 16 lung cancer, 23 colorectal cancer, 10 gastric cancer, 10 liver cancer, and 18 breast cancer studies were systematically reviewed. The herbal medicines attenuated metastatic potential targeting various mechanisms such as epithelial mesenchymal transition (EMT), reactive oxygen species (ROS), and angiogenesis. Specifically, the drugs regulated metastasis related factors such as matrix metalloproteinase (MMP), serine-threonine protein kinase/extracellular regulated protein kinase (AKT/ERK), angiogenic factors, and chemokines. Overall, the present study is the first review, comprehensively investigating the anti-metastasis effect of herbal medicines on five major cancers, providing the experimental models, doses and durations, and mechanisms. Herbal medicines could be a potent candidate for anti-metastatic drugs.

11.
Stem Cell Res ; 48: 101943, 2020 10.
Article in English | MEDLINE | ID: mdl-32777770

ABSTRACT

OCT4 and NANOG are core transcription factor genes in self-renewal, differentiation, and reprogramming. Here, we generated an OCT4-EGFP, NANOG-tdTomato dual reporter hiPSC line, KKUi001-A, on the basis of human induced pluripotent stem cells using CRISPR/Cas9 technology. EGFP and tdTomato reporter were inserted into before the stop codon of OCT4 and NANOG, respectively. Simultaneous expression of EGFP and tdTomato was observed when expression of OCT4 and NANOG was changed during differentiation and reprogramming. KKUi001-A hiPSC line will be a useful tool to find initial time point of OCT4 and NANOG expression during reprogramming process and to screen small molecules that promote reprogramming.


Subject(s)
Induced Pluripotent Stem Cells , CRISPR-Cas Systems/genetics , Cell Differentiation , Cellular Reprogramming , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Luminescent Proteins , Nanog Homeobox Protein/genetics , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Red Fluorescent Protein
12.
ACS Appl Mater Interfaces ; 11(22): 20557-20565, 2019 Jun 05.
Article in English | MEDLINE | ID: mdl-31066540

ABSTRACT

For wider applications of liquid metal-based stretchable electronics, electrical interface has remained a crucial issue due to its fragile electromechanical stability and complex fabrication steps. In this study, a direct writing-based technique is introduced to form the writing paths of conductive liquid metal (eutectic gallium-indium, eGaIn) and electrical connections to off-the-shelf metal electrodes in a single process. Specifically, by extending eGaIn wires written on a silicone substrate, the eGaIn wires were physically connected to five different metal electrodes, of which stability as an electrical connection was investigated. Among the five different surface materials, the metal electrode finished by electroless nickel immersion gold (ENIG) was reproducible and had low contact resistance without time-dependent variation. In our experiments, it was verified that the electrode part made by an ENIG-finished flexible flat cable (FFC) was mechanically (strain, ≤100%; pressure, ≤600 kPa) and thermally (temperature, ≤180 °C) durable. By modifying the trajectories of eGaIn wires, soft sensor systems composed of 10 sensing units were fabricated and tested to measure finger joint angles and ground reaction forces, respectively. The proposed method enables eGaIn-based soft sensors or circuits to be connected to typical electronic components through FFCs or weldable surfaces, using only off-the-shelf materials without additional mechanical or chemical treatments.

13.
Anim Cells Syst (Seoul) ; 22(2): 132-139, 2018.
Article in English | MEDLINE | ID: mdl-30460090

ABSTRACT

Generation of induced pluripotent stem cells (iPSCs) by defined factors (OCT4, SOX2, C-MYC, and KLF4) from various human primary cells has been reported. Human fibroblasts have been widely used as a cellular source in reprogramming studies over recent decades. The original method of iPSC generation uses retro- or lentivirus vectors that require integration of viral DNA into the target cells. The integration of exogenous genes encoding transcription factors (OCT4, SOX2, C-MYC, and KLF4) can be detected in iPSCs, raising concern about the risk of mutagenesis and tumor formation. Therefore, stem cell therapy would ideally require generation of integration-free iPSCs using non-integration gene delivery system such as Sendai virus, recombinant proteins, synthetic mRNA, and episomal vectors. Several groups have reported that episomal vectors are capable of reprogramming human fibroblasts into iPSCs. Although vector concentration and cell density are important in the episomal vector reprogramming method, optimization of this method for human fibroblasts has not been reported. In this study, we determined optimal conditions for generating integration-free iPSCs from human fibroblasts through the use of different concentrations of episomal vectors (OCT4/p53, SOX2/KLF4, L-MYC/LIN28A) and different plating cell density. We found that optimized vector concentration and cell density accelerate reprogramming and improve iPSC generation. Our study provides a detailed stepwise protocol for improved generation of integration-free iPSCs from human fibroblasts by transfection with episomal vectors.

14.
Soft Robot ; 5(5): 601-612, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29975584

ABSTRACT

Given the need for stretchable sensors, many studies have been conducted on eutectic gallium-indium, which has superior properties as a conductive ink. However, it has remained a challenge to manufacture sensors in a consistent and reproducible manner because conventional mold-based fabrication still depends highly on manual techniques. To overcome this limitation, the direct ink writing was used in this study, focusing on improving the stability of writing by exploring issues related to failure and ensuring the consistency of the microchannel by selecting appropriate process variables, including the syringe material. As a result, multiple sensors produced under the same manufacturing conditions had similar behaviors. This fabrication technique improved the accuracy of manufacturing a microchannel, and its behavior was predicted successfully by a simple mathematical model, which was confirmed by nondestructive inspections of the microchannel. In developing a one-piece glove-type sensor without an assembly process, the efficiency of the fabrication technique was also emphasized.

15.
Epigenetics ; 13(4): 343-351, 2018.
Article in English | MEDLINE | ID: mdl-29613829

ABSTRACT

Genomic imprinting is the process of epigenetic modification whereby genes are expressed in a parent-of-origin dependent manner; it plays an important role in normal growth and development. Parthenogenetic embryos contain only the maternal genome. Parthenogenetic embryonic stem cells could be useful for studying imprinted genes. In humans, mature cystic ovarian teratomas originate from parthenogenetic activation of oocytes; they are composed of highly differentiated mature tissues containing all three germ layers. To establish human parthenogenetic induced pluripotent stem cell lines (PgHiPSCs), we generated parthenogenetic fibroblasts from ovarian teratoma tissues. We compared global DNA methylation status of PgHiPSCs with that of biparental human induced pluripotent stem cells by using Illumina Infinium HumanMethylation450 BeadChip array. This analysis identified novel single imprinted CpG sites. We further tested DNA methylation patterns of two of these sites using bisulfite sequencing and described novel candidate imprinted CpG sites. These results confirm that PgHiPSCs are a powerful tool for identifying imprinted genes and investigating their roles in human development and diseases.


Subject(s)
DNA Methylation , Genomic Imprinting , Induced Pluripotent Stem Cells/cytology , Ovarian Neoplasms/genetics , Teratoma/genetics , Cells, Cultured , CpG Islands , Female , Gene Expression Profiling/methods , Gene Expression Regulation , Humans , Oligonucleotide Array Sequence Analysis/methods , Ovarian Neoplasms/pathology , Parthenogenesis , Sequence Analysis, DNA , Teratoma/pathology
16.
Sci Rep ; 8(1): 925, 2018 01 17.
Article in English | MEDLINE | ID: mdl-29343847

ABSTRACT

Stimulus-driven orienting of attention toward a novel, salient stimulus is a highly adaptive behavior. In an opposing vein, it is also crucial to endogenously redirect attention to other stimuli of behavioral significance if the attended stimulus was evaluated to be unimportant. This stimulus-driven orienting and subsequent reorienting of attention are known to be mediated by similar neural substrates. However, this might be because reorienting was triggered by a sensory transition exogenously capturing attention, such as an abrupt onset of a new stimulus. Here, we used fMRI to measure the human brain's activity when attention captured by a salient distractor is endogenously reoriented toward the concurrent main task, without any exogenous shifting of attention. As results, the transient activity of the anterior insula (AI) signaled such endogenous reorienting, predicting behavioral performance. This finding points to the central role of the AI in purely endogenous, self-regulatory control of attention.


Subject(s)
Attention/physiology , Adult , Cerebral Cortex/physiology , Cues , Female , Humans , Magnetic Resonance Imaging/methods , Male , Orientation/physiology , Photic Stimulation/methods , Reaction Time/physiology , Space Perception/physiology , Young Adult
17.
Int J Rheum Dis ; 21(3): 620-628, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29205898

ABSTRACT

AIM: The aim was to study whether oral glucosamine hydrochloride (GlcN.HCl) or mucopolysaccharide protein (MucoP) has a structure-modifying effect on an anterior cruciate ligament transection (ACLT) rabbit model of osteoarthritis (OA). METHODS: OA was surgically induced in the right knees of rabbits by transection of the ACLT. The left knees served as a sham-operated control. The animals were divided into four groups (n = 6 each): negative control (phosphate buffered saline, orally), positive control (oral celecoxib 10 mg/kg body weight/day), GlcN.HCl (oral 100 mg/kg/day) and MucoP (oral 100 mg/kg/day). Experimental animals were sacrificed after 8 weeks of treatment and the distal femur was removed for macroscopic examination, histological assessment, and terminal deoxynucleotidyl transferase-mediated nick-end labeling (TUNEL) assay of the OA rabbits. RESULTS: On gross morphology, severe lesions were observed in articular cartilage in the negative control group. In the GlcN.HCl and MucoP treatment groups, fibrillations and cartilaginous lesions were significantly (P < 0.05) decreased compared to the negative control group. In particular, degenerative changes in cartilage and chondrocyte cellularity were significantly reduced (P < 0.05) in the positive control (celecoxib) group, GlcN.HCl treatment group and MucoP treatment group compared with the negative control group. TUNEL assay showed that apoptotic chondrocytes were significantly suppressed in the celecoxib group. Similar significant (P < 0.05) results were seen in the GlcN.HCl group and MucoP group but apoptosis of chondrocytes were high in the negative control group. CONCLUSION: These data suggest that the protective effects of GlcN.HCl and MucoP may play a useful role in the clinical treatment of OA.


Subject(s)
Cartilage, Articular/drug effects , Chondrocytes/drug effects , Glucosamine/administration & dosage , Glycosaminoglycans/administration & dosage , Joints/drug effects , Osteoarthritis/drug therapy , Administration, Oral , Animals , Anterior Cruciate Ligament/surgery , Apoptosis/drug effects , Cartilage, Articular/diagnostic imaging , Cartilage, Articular/pathology , Celecoxib/pharmacology , Chondrocytes/pathology , Cyclooxygenase 2 Inhibitors/pharmacology , Disease Models, Animal , Hindlimb , Joints/diagnostic imaging , Joints/pathology , Osteoarthritis/pathology , Rabbits , Time Factors
18.
J Control Release ; 233: 72-80, 2016 07 10.
Article in English | MEDLINE | ID: mdl-27151077

ABSTRACT

Inhaling steroidal anti-inflammatory drugs is the most common treatment for airway inflammatory diseases such as asthma. However, frequent steroid administration causes adverse side effects. Therefore, the successful clinical translation of numerous steroidal drugs greatly needs pulmonary drug delivery systems which are formulated from biocompatible and non-immunogenic polymers. We have recently developed a new family of biodegradable polymer, vanillyl alcohol-containing copolyoxalate (PVAX) which is able to scavenge hydrogen peroxide and exert potent antioxidant and anti-inflammatory activity. In this work, we report the therapeutic potential of porous PVAX microparticles which encapsulate dexamethasone (DEX) as a therapeutic system for airway inflammatory diseases. PVAX microparticles themselves reduced oxidative stress and suppressed the expression of pro-inflammatory tumor necrosis factor-alpha and inducible nitric oxide synthase in the lung of ovalbumin-challenged asthmatic mice. However, DEX-loaded porous PVAX microparticles showed significantly enhanced therapeutic effects than PVAX microparticles, suggesting the synergistic effects of PVAX with DEX. In addition, PVAX microparticles showed no inflammatory responses to lung tissues. Given their excellent biocompatibility and intrinsic antioxidant and anti-inflammatory activity, PVAX microparticles hold tremendous potential as therapeutic systems for the treatment of airway inflammatory diseases such as asthma.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Antioxidants/administration & dosage , Asthma/drug therapy , Benzyl Alcohols/chemistry , Dexamethasone/administration & dosage , Polymers/administration & dosage , Allergens/immunology , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Antioxidants/chemistry , Antioxidants/therapeutic use , Asthma/metabolism , Asthma/pathology , Cell Survival/drug effects , Dexamethasone/chemistry , Dexamethasone/therapeutic use , Drug Liberation , Lung/drug effects , Lung/pathology , Mice , Mice, Inbred BALB C , Ovalbumin/immunology , Polymers/chemistry , Polymers/therapeutic use , Porosity , RAW 264.7 Cells , Tumor Necrosis Factor-alpha/metabolism
19.
Sci Rep ; 5: 16592, 2015 Nov 13.
Article in English | MEDLINE | ID: mdl-26563741

ABSTRACT

Overproduction of hydrogen peroxide (H2O2) causes oxidative stress and is the main culprit in the pathogenesis of ischemia/reperfusion (I/R) injury. Suppression of oxidative stress is therefore critical in the treatment of I/R injury. Here, we report H2O2-activatable antioxidant prodrug (BRAP) that is capable of specifically targeting the site of oxidative stress and exerting anti-inflammatory and anti-apoptotic activities. BRAP with a self-immolative boronic ester protecting group was designed to scavenge H2O2 and release HBA (p-hydroxybenzyl alcohol) with antioxidant and anti-inflammatory activities. BRAP exerted potent antioxidant and anti-inflammatory activity in lipopolysaccharide (LPS)- and H2O2-stimulated cells by suppressing the generation of ROS and pro-inflammatory cytokines. In mouse models of hepatic I/R and cardiac I/R, BRAP exerted potent antioxidant, anti-inflammatory and anti-apoptotic activities due to the synergistic effects of H2O2-scavenging boronic esters and therapeutic HBA. In addition, administration of high doses of BRAP daily for 7 days showed no renal or hepatic function abnormalities. Therefore BRAP has tremendous therapeutic potential as H2O2-activatable antioxidant prodrug for the treatment of I/R injuries.


Subject(s)
Antioxidants/pharmacology , Boronic Acids/pharmacology , Hydrogen Peroxide/antagonists & inhibitors , Prodrugs/pharmacology , Reperfusion Injury/prevention & control , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/chemistry , Apoptosis/drug effects , Benzyl Alcohols/pharmacology , Boronic Acids/chemistry , Caspase 3/metabolism , Cell Line , Cells, Cultured , Gene Expression/drug effects , Hydrogen Peroxide/metabolism , Immunoblotting , Liver/blood supply , Liver/drug effects , Liver/metabolism , Male , Mice, Inbred BALB C , Microscopy, Confocal , Molecular Structure , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/prevention & control , Prodrugs/chemistry , Reactive Oxygen Species/antagonists & inhibitors , Reactive Oxygen Species/metabolism , Reperfusion Injury/genetics , Reperfusion Injury/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
20.
Int J Mol Sci ; 16(8): 18664-82, 2015 Aug 10.
Article in English | MEDLINE | ID: mdl-26266409

ABSTRACT

Proteomic analyses have already been used in a number of hepatological studies and provide important information. However, few reports have focused on changes in the cytoplasmic proteome. The present study therefore aimed to evaluate changes in cytoplasmic proteome of rats in response to alcoholic hepatotoxicity. Rats were fed a Liber-DeCarli liquid diet containing ethanol for four weeks. Cytoplasmic proteins except mitochondrial proteins from the livers of these animals were investigated using two-dimensional gel electrophoresis and mass spectrometry. Alcohol induced a decrease in body weight gain and an increase in alanine transaminase (ALT), cholesterol, and phospholipid levels. Histopathological observations revealed hepatic damage characterized by necrosis and fatty change in alcohol-treated group at week 2, which continues until week 4. Our proteomic analysis revealed that 25 proteins were differentially expressed in the ethanol-fed group. Of these, 12 cytoplasmic proteins are being reported for the first time. Taken together, our results provide further insights into the disease mechanism and therapeutic information of alcoholic liver disease.


Subject(s)
Cytoplasm/pathology , Liver Diseases, Alcoholic/pathology , Liver/pathology , Proteome/analysis , Alanine Transaminase/blood , Animals , Body Weight , Cholesterol/blood , Cytoplasm/metabolism , Electrophoresis, Gel, Two-Dimensional , Ethanol/toxicity , Liver/metabolism , Liver Diseases, Alcoholic/blood , Liver Diseases, Alcoholic/metabolism , Male , Proteome/metabolism , Proteomics , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...