Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nutrients ; 16(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38892621

ABSTRACT

BACKGROUND: Recently, many studies have been devoted to discovering nutrients for exercise-like effects. Resistance exercise and the intake of essential amino acids (EAAs) are known to be factors that can affect muscle mass and strength improvement. The purpose of this study was to investigate changes in muscle quality, myokines, and inflammation in response to resistance exercise and EAA supplementation. METHODS: Thirty-four males volunteered to participate in this study. They were assigned to four groups: (1) placebo (CO), (2) resistance exercise (RE), (3) EAA supplementation, and (4) RE + EAA supplementation. Body composition, muscle quality, myokines, and inflammation were measured at baseline and four weeks after treatment. RESULTS: Lean body fat had decreased in both RE and RE + EAA groups. Lean body mass had increased in only the RE + EAA group. In all groups except for CO, irisin, myostatin A, and TNF-α levels had decreased. The grip strength of the right hand and trunk flexion peak torque increased in the RE group. The grip strength of the left hand, trunk flexion peak torque, and knee flexion peak torque of the left leg were increased in RE + EAA. CONCLUSIONS: RE, EAA, and RE + EAA could effectively improve the muscle quality, myokine, and inflammation factors of young adult males. This finding highlights the importance of resistance exercise and amino acid intake.


Subject(s)
Amino Acids, Essential , Body Composition , Dietary Supplements , Inflammation , Muscle, Skeletal , Resistance Training , Humans , Male , Young Adult , Muscle, Skeletal/physiology , Muscle, Skeletal/metabolism , Amino Acids, Essential/administration & dosage , Tumor Necrosis Factor-alpha/blood , Adult , Muscle Strength/drug effects , Hand Strength/physiology , Myostatin/metabolism , Fibronectins , Myokines
2.
Sleep Breath ; 28(3): 1223-1229, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38308752

ABSTRACT

BACKGROUND: The purpose of this study was to investigate the relationship between sleep quality and gravitational tolerance because sleep could directly affect physiological variables of the human body. METHODS: For the present study, 157 male Korea Air Force Academy cadets were recruited. They were assigned into a gravity (G)-tolerance test pass group (GP, n = 87) and a G-tolerance test fail group (GF, n = 70). All participants were assessed for G-tolerance test and Pittsburgh Sleep Quality Index (PSQI), a self-report questionnaire. Physical fitness test was performed based on the physical fitness test of the Ministry of National Defense of Korea. RESULTS: Independent t-test showed that PSQI global score (p < 0.001), PSQI sleep quality (p < 0.001), PSQI sleep onset latency (p = 0.009), PSQI sleep disturbance (p < 0.001), and PSQI daytime dysfunction (p < 0.001) were significantly different between the two groups. Participants with PSQI score less than 5 were more likely to have a longer G-tolerance test time (OR = 4.705, 95% CI = 2.00-11.05). Additionally, associations between those with PSQI score less than 5 (OR = 4.567, 95% CI = 1.94-10.74) were after adjusting (< 30 s and ≥ 30 s) for covariates. A negative correlation was found between G-tolerance test time and PSQI global score (p < 0.001). Negative correlations were found among 3 km running, push-up (p < 0.001), and sit-up (p < 0.001). A positive correlation was found between push-up and sit-up (p < 0.001). CONCLUSION: In conclusion, participants with good sleep quality were 4.705 times more likely to have longer G-tolerance test time. Thus, it is important for aircraft pilots to manage their sleep quality. Pre-pilots should also improve their sleep quality to pass the G-tolerance test.


Subject(s)
Military Personnel , Sleep Quality , Humans , Male , Adult , Republic of Korea , Young Adult , Gravitation , Surveys and Questionnaires , Sleep Wake Disorders/physiopathology , Sleep Wake Disorders/epidemiology
3.
Aerosp Med Hum Perform ; 94(5): 384-388, 2023 May 01.
Article in English | MEDLINE | ID: mdl-37069763

ABSTRACT

BACKGROUND: The purpose of this study was to analyze G test results according to the Three-Factor Eating Questionnaire (TFEQ), body composition, and physical fitness of fourth-grade air force cadets. This was done to identify the relationship between the TFEQ, body composition, and G resistance, in order to provide basic data for pilots and air force cadets to strengthen G tolerance.METHODS: From the Republic of Korea Air Force Academy (ROKAFA), 138 fourth-year cadets were assessed using the TFEQ and for body composition and physical fitness. Based on these measurement results, a G test result analysis and a correlation analysis were conducted.RESULT: The TFEQ showed statistically significant differences in several areas when comparing the G test pass group (GP group) to the G test fail group (GF group). Three-km running time was significantly faster in the GP group than in the GF group. Physical activity levels were higher in the GP group compared to the GF group.CONCLUSION: The TFEQ demonstrated utility in predicting whether cadets will pass or fail G-LOC testing. G test success for any cadet will require improvement in continuous eating behavior and physical fitness management. If variables affecting the G test are analyzed and applied to physical education and training through continuous research over the next two to three years, it is expected to have a greater effect on the success of the G test for every cadet.Sung J-Y, Kim I-K, Jeong D-H. Gravitational acceleration test results by lifestyle and physical fitness of air force cadets. Aerosp Med Hum Perform. 2023; 94(5):384-388.


Subject(s)
Military Personnel , Physical Fitness , Humans , Exercise Test , Exercise , Body Composition , Life Style
SELECTION OF CITATIONS
SEARCH DETAIL
...