Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Nutrients ; 16(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38931199

ABSTRACT

Saikosaponin D (SSD), derived from Bupleurum falcatum L., has various pharmacological properties, including immunoregulatory, anti-inflammatory, and anti-allergic effects. Several studies have investigated the anti-tumor effects of SSD on cancer in multiple organs. However, its role in colorectal cancer (CRC) remains unclear. Therefore, this study aimed to elucidate the suppressive effects of SSD on CRC cell survival and metastasis. SSD reduced the survival and colony formation ability of CRC cells. SSD-induced autophagy and apoptosis in CRC cells were measured using flow cytometry. SSD treatment increased LC3B and p62 autophagic factor levels in CRC cells. Moreover, SSD-induced apoptosis occurred through the cleavage of caspase-9, caspase-3, and PARP, along with the downregulation of the Bcl-2 family. In the in vivo experiment, a reduction in the number of metastatic tumor nodules in the lungs was observed after the oral administration of SSD. Based on these results, SSD inhibits the metastasis of CRC cells to the lungs by inducing autophagy and apoptosis. In conclusion, SSD suppressed the proliferation and metastasis of CRC cells, suggesting its potential as a novel substance for the metastatic CRC treatment.


Subject(s)
Apoptosis , Autophagy , Colorectal Neoplasms , Lung Neoplasms , Oleanolic Acid , Saponins , Saponins/pharmacology , Oleanolic Acid/pharmacology , Oleanolic Acid/analogs & derivatives , Autophagy/drug effects , Colorectal Neoplasms/pathology , Colorectal Neoplasms/drug therapy , Apoptosis/drug effects , Humans , Lung Neoplasms/secondary , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Mice , Mice, Inbred BALB C , Antineoplastic Agents, Phytogenic/pharmacology , Xenograft Model Antitumor Assays , Cell Survival/drug effects , Mice, Nude
2.
ACS Infect Dis ; 10(3): 879-889, 2024 03 08.
Article in English | MEDLINE | ID: mdl-38386664

ABSTRACT

The highly infectious coronavirus SARS-CoV-2 relies on the viral main protease (Mpro, also known as 3CLpro or Nsp5) to proteolytically process the polyproteins encoded by the viral genome for the release of functional units in the host cells to initiate viral replication. Mpro also interacts with host proteins of the innate immune pathways, such as IRF3 and STAT1, to suppress their activities and facilitate virus survival and proliferation. To identify the host mechanism for regulating Mpro, we screened various classes of E3 ubiquitin ligases and found that Parkin of the RING-between-RING family can induce the ubiquitination and degradation of Mpro in the cell. Furthermore, when the cells undergo mitophagy, the PINK1 kinase activates Parkin and enhances the ubiquitination of Mpro. We also found that elevated expression of Parkin in the cells significantly decreased the replication of SARS-CoV-2 virus. Interestingly, SARS-CoV-2 infection downregulates Parkin expression in the mouse lung tissues compared to healthy controls. These results suggest an antiviral role of Parkin as a ubiquitin ligase targeting Mpro and the potential for exploiting the virus-host interaction mediated by Parkin to treat SARS-CoV-2 infection.


Subject(s)
COVID-19 , Coronavirus 3C Proteases , Ubiquitin , Animals , Mice , Ubiquitin/metabolism , Protein Kinases/genetics , SARS-CoV-2/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Virus Replication
3.
Front Genome Ed ; 5: 1251557, 2023.
Article in English | MEDLINE | ID: mdl-37908969

ABSTRACT

Genome editing in plants typically relies on T-DNA plasmids that are mobilized by Agrobacterium-mediated transformation to deliver the CRISPR/Cas machinery. Here, we introduce a series of CRISPR/Cas9 T-DNA vectors for minimal settings, such as teaching labs. Gene-specific targeting sequences can be inserted as annealed short oligonucleotides in a single straightforward cloning step. Fluorescent markers expressed in mature seeds enable reliable selection of transgenic or transgene-free individuals using a combination of inexpensive LED lamps and colored-glass alternative filters. Testing these tools on the Arabidopsis GROWTH-REGULATING FACTOR (GRF) genes, we were able to create a collection of predicted null mutations in all nine family members with little effort. We then explored the effects of simultaneously targeting two, four and eight GRF genes on the rate of induced mutations at each target locus. In our hands, multiplexing was associated with pronounced disparities: while mutation rates at some loci remained consistently high, mutation rates at other loci dropped dramatically with increasing number of single guide RNA species, thereby preventing a systematic mutagenesis of the family.

4.
Article in English | MEDLINE | ID: mdl-37798850

ABSTRACT

Background: Chronic kidney disease (CKD)-associated pruritus is a severe distressing condition that frequently occurs in patients undergoing dialysis. In this study, the profile of the skin microbiome was analyzed to understand the underlying etiology and potential treatments. Methods: Seventy-six end-stage kidney disease (ESKD) patients (hemodialysis, 40; peritoneal dialysis, 36) and 15 healthy controls were enrolled and swabbed at three sites: back, antecubital fossa, and shin. The pruritus severity of the enrolled subjects was validated by the Worst Itch Numeric Rating Scale (WI-NRS), 5-D itch scale, and Uremic Pruritus in Dialysis Patients (UP-Dial). The 16S gene-based metagenomics method was applied to skin microbiome analysis. Results: In the comparison of bacterial communities of ESKD patients and the control group, there was a significant difference on back. Specifically, the average composition ratio of the Cutibacterium in the back samples was significantly lower in ESKD patients than in healthy controls (p < 0.01). In further analysis of ESKD patients, Cutibacterium was significantly lower in the high pruritus group than in the low pruritus group (p < 0.05), even though other clinical parameters such as age, calcium-phosphorus product, and intact parathyroid hormone showed no significance difference between the groups. Conclusion: In ESKD patients, the skin microbiome of the back was significantly altered, and the severity of itching was related to the reduction of Cutibacterium. This research reveals the relationship between skin microbiota and CKD-associated pruritus in multiple skin sites for the first time. The results of this study suggest a potential data basis for the diagnosis and treatment of CKD-associated pruritus.

5.
Cell Biosci ; 13(1): 70, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37013648

ABSTRACT

BACKGROUND: Slit and Robo are evolutionarily conserved ligand and receptor proteins, respectively, but the number of slit and robo gene paralogs varies across recent bilaterian genomes. Previous studies indicate that this ligand-receptor complex is involved in axon guidance. Given the lack of data regarding Slit/Robo in the Lophotrochozoa compared to Ecdysozoa and Deuterostomia, the present study aims to identify and characterize the expression of Slit/Robo orthologs in leech development. RESULTS: We identified one slit (Hau-slit), and two robo genes (Hau-robo1 and Hau-robo2), and characterized their expression spatiotemporally during the development of the glossiphoniid leech Helobdella austinensis. Throughout segmentation and organogenesis, Hau-slit and Hau-robo1 are broadly expressed in complex and roughly complementary patterns in the ventral and dorsal midline, nerve ganglia, foregut, visceral mesoderm and/or endoderm of the crop, rectum and reproductive organs. Before yolk exhaustion, Hau-robo1 is also expressed where the pigmented eye spots will later develop, and Hau-slit is expressed in the area between these future eye spots. In contrast, Hau-robo2 expression is extremely limited, appearing first in the developing pigmented eye spots, and later in the three additional pairs of cryptic eye spots in head region that never develop pigment. Comparing the expression of robo orthologs between H. austinensis and another glossiphoniid leech, Alboglossiphonia lata allows to that robo1 and robo2 operate combinatorially to differentially specify pigmented and cryptic eyespots within the glossiphoniid leeches. CONCLUSIONS: Our results support a conserved role in neurogenesis, midline formation and eye spot development for Slit/Robo in the Lophotrochozoa, and provide relevant data for evo-devo studies related to nervous system evolution.

6.
Biochemistry ; 62(7): 1274-1286, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36920305

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is substantiated by the reprogramming of liver metabolic pathways that disrupts the homeostasis of lipid and glucose metabolism and thus promotes the progression of the disease. The metabolic pathways associated with NAFLD are regulated at different levels from gene transcription to various post-translational modifications including ubiquitination. Here, we used a novel orthogonal ubiquitin transfer platform to identify pyruvate dehydrogenase A1 (PDHA1) and acetyl-CoA acetyltransferase 1 (ACAT1), two important enzymes that regulate glycolysis and ketogenesis, as substrates of E3 ubiquitin ligase UBE3A/E6AP. We found that overexpression of UBE3A accelerated the degradation of PDHA1 and promoted glycolytic activities in HEK293 cells. Furthermore, a high-fat diet suppressed the expression of UBE3A in the mouse liver, which was associated with increased ACAT1 protein levels, while forced expression of UBE3A in the mouse liver resulted in decreased ACAT1 protein contents. As a result, the mice with forced expression of UBE3A in the liver exhibited enhanced accumulation of triglycerides, cholesterol, and ketone bodies. These results reveal the role of UBE3A in NAFLD development by inducing the degradation of ACAT1 in the liver and promoting lipid storage. Overall, our work uncovers an important mechanism underlying the regulation of glycolysis and lipid metabolism through UBE3A-mediated ubiquitination of PDHA1 and ACAT1 to regulate their stabilities and enzymatic activities in the cell.


Subject(s)
Acetyltransferases , Non-alcoholic Fatty Liver Disease , Humans , Mice , Animals , Acetyltransferases/genetics , HEK293 Cells , Ubiquitination , Ubiquitin-Protein Ligases/metabolism , Oxidoreductases/metabolism , Lipids , Acetyl-CoA C-Acetyltransferase/genetics
7.
J Med Chem ; 66(1): 491-502, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36571278

ABSTRACT

The enzymatic cascades for ubiquitin transfer regulate key cellular processes and are the intense focus of drug development for treating cancer and neurodegenerative diseases. E1 is at the apex of the UB transfer cascade, and molecules inhibiting E1 have shown promising activities against cancer cell proliferation. Compared to small molecules, peptidomimetics have emerged as powerful tools to disrupt the protein-protein interactions (PPI) with less drug resistance and high stability in the cell. Herein, we harnessed the D-sulfono-γ-AA peptide to mimic the N-terminal helix of E2 and thereby inhibit E1-E2 interaction. Two stapled peptidomimetics, M1-S1 and M1-S2, were identified as effective inhibitors to block UB transfer from E1 to E2, as shown by in vitro and cellular assays. Our work suggested that PPIs with the N-terminal helix of E2 at the E1-E2 and E2-E3 interfaces could be a promising target for designing inhibitors against protein ubiquitination pathways in the cell.


Subject(s)
Peptidomimetics , Ubiquitin , Ubiquitin/metabolism , Peptidomimetics/pharmacology , Ubiquitination , Ubiquitin-Conjugating Enzymes/metabolism , Peptides/chemistry , Ubiquitin-Protein Ligases/metabolism
8.
Nutrients ; 14(21)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36364815

ABSTRACT

Colorectal cancer (CRC) is one of the diseases with the highest rates of prevalence and mortality despite therapeutic methods in the world. In particular, there are not enough methods to treat metastasis of CRC cells to distant organs. Cannabis sativa Linne (C. sativa) is a popular medicinal plant used by humans to treat many diseases. Recently, extracts of C. sativa have shown diverse pharmacological effects as a result of choosing different extraction methods. In this study, we performed experiments to confirm the inhibitory effect and related mechanisms of supercritical extract of C. sativa on metastatic CRC cells. The effect of SEC on the viability of CRC cell lines, CT26 and HCT116, was determined using CCK reagent. Flow cytometry was performed to confirm whether SEC can promote cell cycle arrest and apoptosis. Additionally, SEC reduced proliferation of CT26 and HCT116 cells without causing toxicity to normal colon cell line CCD-18Co cells. SEC treatment reduced colony formation in both CRC cell lines, promoted G0/G1 phase arrest and apoptosis in CT26 and HCT116 cells through AMPK activation and MAPKs such as ERK, JNK, and p38 inactivation. Moreover, oral administration of SEC decreased pulmonary metastasis of CT26 cells. Our research demonstrates the inhibitory effect of SEC on CRC cell proliferation and metastasis. Thus, SEC might have therapeutic potential for CRC treatment.


Subject(s)
Cannabis , Colorectal Neoplasms , Lung Neoplasms , Humans , AMP-Activated Protein Kinases , Cell Line, Tumor , Colorectal Neoplasms/pathology , Cell Cycle Checkpoints , Apoptosis , Lung Neoplasms/pathology , Cell Proliferation
9.
Adv Mater ; 34(32): e2202866, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35700272

ABSTRACT

The desire to enhance the efficiency of organic light-emitting devices (OLEDs) has driven to the investigation of advanced materials with fascinating properties. In this work, the efficiency of top-emission OLEDs (TEOLEDs) is enhanced by introducing ampicillin microstructures (Amp-MSs) with dual phases (α-/ß-phase) that induce photoluminescence (PL) and electroluminescence (EL). Moreover, Amp-MSs can adjust the charge balance by Fermi level (EF ) alignment, thereby decreasing the leakage current. The decrease in the wave-guided modes can enhance the light outcoupling through optical scattering. The resulting TEOLED demonstrates a record-high external quantum efficiency (EQE) (maximum: 68.7% and average: 63.4% at spectroradiometer; maximum: 44.8% and average: 42.6% at integrating sphere) with a wider color gamut (118%) owing to the redshift of the spectrum by J-aggregation. Deconvolution of the EL intensities is performed to clarify the contribution of Amp-MSs to the device EQE enhancement (optical scattering by Amp-MSs: 17.0%, PL by radiative energy transfer: 9.1%, and EL by J-aggregated excitons: 4.6%). The proposed TEOLED outperforms the existing frameworks in terms of device efficiency.

11.
Sci Rep ; 12(1): 2300, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35145146

ABSTRACT

Herein, an unprecedented report is presented on the incorporation of size-dependent gold nanoparticles (AuNPs) with polyvinylpyrrolidone (PVP) capping into a conventional hole transport layer, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The hole transport layer blocks ion-diffusion/migration in methylammonium-lead-bromide (MAPbBr3)-based perovskite light-emitting diodes (PeLEDs) as a modified interlayer. The PVP-capped 90 nm AuNP device exhibited a seven-fold increase in efficiency (1.5%) as compared to the device without AuNPs (0.22%), where the device lifetime was also improved by 17-fold. This advancement is ascribed to the far-field scattering of AuNPs, modified work function and carrier trapping/detrapping. The improvement in device lifetime is attributed to PVP-capping of AuNPs which prevents indium diffusion into the perovskite layer and surface ion migration into PEDOT:PSS through the formation of induced electric dipole. The results also indicate that using large AuNPs (> 90 nm) reduces exciton recombination because of the trapping of excess charge carriers due to the large surface area.

12.
J Med Chem ; 65(3): 2497-2506, 2022 02 10.
Article in English | MEDLINE | ID: mdl-35045253

ABSTRACT

Manipulating the activities of E3 ubiquitin ligases with chemical ligands holds promise for correcting E3 malfunctions and repurposing the E3s for induced protein degradation in the cell. Herein, we report an alternative strategy to proteolysis-targeting chimeras (PROTACs) and molecular glues to induce protein degradation by constructing and screening a γ-AA peptide library for cyclic peptidomimetics binding to the HECT domain of E6AP, an E3 ubiquitinating p53 coerced by the human papillomavirus and regulating pathways implicated in neurodevelopmental disorders such as Angelman syndrome. We found that a γ-AA peptide P6, discovered from the affinity-based screening with the E6AP HECT domain, can significantly stimulate the ubiquitin ligase activity of E6AP to ubiquitinate its substrate proteins UbxD8, HHR23A, and ß-catenin in reconstituted reactions and HEK293T cells. Furthermore, P6 can accelerate the degradation of E6AP substrates in the cell by enhancing the catalytic activities of E6AP. Our work demonstrates the feasibility of using synthetic ligands to stimulate E3 activities in the cell. The E3 stimulators could be developed alongside E3 inhibitors and substrate recruiters such as PROTACs and molecular glues to leverage the full potential of protein ubiquitination pathways for drug development.


Subject(s)
Enzyme Activators/pharmacology , Peptides, Cyclic/pharmacology , Peptidomimetics/pharmacology , Proteolysis/drug effects , Ubiquitin-Protein Ligases/metabolism , Ubiquitination/drug effects , Blood Proteins/metabolism , DNA Repair Enzymes/metabolism , DNA-Binding Proteins/metabolism , HEK293 Cells , Humans , Ligands , Membrane Proteins/metabolism , Peptide Library , beta Catenin/metabolism
13.
Phytomedicine ; 96: 153809, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34782203

ABSTRACT

BACKGROUND: Despite the rising 5-year survival rate of colorectal cancer (CRC) patients, the survival rate decreases as the stage progress, and a low survival rate is highly associated with metastasis. PURPOSE: The purpose of our study is to investigate the effect of dehydroevodiamine (DHE) on the lung metastasis of CRC and the proliferation of CRC cells. STUDY DESIGN: Cell death was confirmed after DHE treatment on several CRC cell lines. The mechanism of cell cytotoxicity was found using flow cytometry. After that, the expression of the proteins or mRNAs related to the cell cytotoxicity was confirmed. Also, anti-metastatic ability of DHE in CRC cells was measured by checking the expression of Epithelial to Mesenchymal Transition (EMT) markers. Lung metastasis mouse model was established, and DHE was administered orally for 14 days. RESULTS: DHE suppressed the viability of HCT116, CT26, SW480, and LoVo cells. DHE treatment led to G2/M arrest via a reduction of cyclin B1/CDK1 and caspase-dependent apoptosis. It also induced autophagy by regulating LC3-II and beclin-1 expression. Additionally, migration and invasion of CRC cells were decreased by DHE through regulation of the expression of EMT markers. Oral administration of DHE could inhibit the lung metastasis of CT26 cells in an in vivo model. CONCLUSION: Our study demonstrated that DHE has a potential therapeutic effect on colorectal cancer metastasis.


Subject(s)
Colorectal Neoplasms , Lung Neoplasms , Alkaloids , Animals , Apoptosis , Cell Line, Tumor , Cell Movement , Cell Proliferation , Colorectal Neoplasms/drug therapy , Epithelial-Mesenchymal Transition , G2 Phase Cell Cycle Checkpoints , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/drug therapy , Mice , Neoplasm Metastasis
15.
Int J Mol Sci ; 22(19)2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34638625

ABSTRACT

Glycosyltransferase OGT catalyzes the conjugation of O-linked ß-D-N-acetylglucosamine (O-GlcNAc) to Ser and Thr residues of the cellular proteins and regulates many key processes in the cell. Here, we report the identification of OGT as a ubiquitination target of HECT-type E3 ubiquitin (UB) ligase E6AP, whose overexpression in HEK293 cells would induce the degradation of OGT. We also found that the expression of E6AP in HeLa cells with the endogenous expression of the E6 protein of the human papillomavirus (HPV) would accelerate OGT degradation by the proteasome and suppress O-GlcNAc modification of OGT substrates in the cell. Overall, our study establishes a new mechanism of OGT regulation by the ubiquitin-proteasome system (UPS) that mediates the crosstalk between protein ubiquitination and O-GlcNAcylation pathways underlying diverse cellular processes.


Subject(s)
N-Acetylglucosaminyltransferases/metabolism , Oncogene Proteins, Viral/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin/metabolism , Cell Line , Cell Line, Tumor , HEK293 Cells , HeLa Cells , Humans , Papillomaviridae/metabolism , Proteasome Endopeptidase Complex/metabolism , Ubiquitination/physiology
16.
FASEB J ; 35(11): e21986, 2021 11.
Article in English | MEDLINE | ID: mdl-34662469

ABSTRACT

The E6 protein of the human papillomavirus (HPV) underpins important protein interaction networks between the virus and host to promote viral infection. Through its interaction with E6AP, a host E3 ubiquitin (UB) ligase, E6 stirs the protein ubiquitination pathways toward the oncogenic transformation of the infected cells. For a systematic measurement of E6 reprogramming of the substrate pool of E6AP, we performed a proteomic screen based on "orthogonal UB transfer (OUT)" that allowed us to identify the ubiquitination targets of E6AP dependent on the E6 protein of HPV-16, a high-risk viral subtype for the development of cervical cancer. The OUT screen identified more than 200 potential substrates of the E6-E6AP pair based on the transfer of UB from E6AP to the substrate proteins. Among them, we verified that E6 would induce E6AP-catalyzed ubiquitination of importin proteins KPNA1-3, protein phosphatase PGAM5, and arginine methyltransferases CARM1 to trigger their degradation by the proteasome. We further found that E6 could significantly reduce the cellular level of KPNA1 that resulted in the suppression of nuclear transport of phosphorylated STAT1 and the inhibition of interferon-γ-induced apoptosis in cervical cancer cells. Overall, our work demonstrates OUT as a powerful proteomic platform to probe the interaction of E6 and host cells through protein ubiquitination and reveals a new role of E6 in down-regulating nuclear transport proteins to attenuate tumor-suppressive signaling.


Subject(s)
Mitochondrial Proteins/metabolism , Oncogene Proteins, Viral/metabolism , Papillomaviridae/metabolism , Phosphoprotein Phosphatases/metabolism , Repressor Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , alpha Karyopherins/metabolism , HEK293 Cells , HeLa Cells , Humans , Interferon-gamma/metabolism , Protein Binding
17.
Am J Chin Med ; 49(6): 1535-1555, 2021.
Article in English | MEDLINE | ID: mdl-34247563

ABSTRACT

Colorectal cancer (CRC) is the second most common cause of cancer death in the world, and metastatic CRC is a major cause of cancer death. Gallotannin (GT), a polyphenolic compound, has shown various biological effects such as anti-oxidant, anti-inflammatory, antimicrobial, and antitumor effects. However, the effects of GT on metastatic CRC cells are not completely understood. This study aimed to investigate the anti-metastatic effect of GT and the underlying mechanisms on metastatic CRC cells. Oral administration of GT suppressed the lung metastasis of metastatic CRC cells in the experimental mouse model. GT decreased the viability of metastatic CRC cell lines, including CT26, HCT116, and SW620, by inducing apoptosis through the activation of extrinsic and intrinsic pathways, cell cycle arrest through inactivation of CDK2/cyclin A complex, and autophagic cell death through up-regulation of LC3B and p62 levels. GT regulated PI3K/AKT/mTOR and AMPK signaling pathways, which are critical for the development and maintenance of cancer. Additionally, non-cytotoxic concentrations of GT can suppress migration and invasion of CRC cells by inhibiting the expression and activity of matrix metalloproteinase (MMP)-2 and MMP-9 and epithelial-mesenchymal transition by downregulating the expression of mesenchymal markers including snail, twist, and vimentin. In conclusion, GT prevented colorectal lung metastasis by reducing survival and inhibiting the metastatic phenotypes of CRC cells.


Subject(s)
Apoptosis/drug effects , Autophagy/drug effects , Cell Cycle Checkpoints/drug effects , Colorectal Neoplasms/drug therapy , Hydrolyzable Tannins/pharmacology , Lung Neoplasms/drug therapy , Animals , Cell Line, Tumor , Colorectal Neoplasms/pathology , Hydrolyzable Tannins/chemistry , Lung Neoplasms/secondary , Mice , Molecular Structure
18.
Nat Commun ; 12(1): 2864, 2021 May 17.
Article in English | MEDLINE | ID: mdl-34001906

ABSTRACT

Stretchable organic light-emitting diodes are ubiquitous in the rapidly developing wearable display technology. However, low efficiency and poor mechanical stability inhibit their commercial applications owing to the restrictions generated by strain. Here, we demonstrate the exceptional performance of a transparent (molybdenum-trioxide/gold/molybdenum-trioxide) electrode for buckled, twistable, and geometrically stretchable organic light-emitting diodes under 2-dimensional random area strain with invariant color coordinates. The devices are fabricated on a thin optical-adhesive/elastomer with a small mechanical bending strain and water-proofed by optical-adhesive encapsulation in a sandwiched structure. The heat dissipation mechanism of the thin optical-adhesive substrate, thin elastomer-based devices or silicon dioxide nanoparticles reduces triplet-triplet annihilation, providing consistent performance at high exciton density, compared with thick elastomer and a glass substrate. The performance is enhanced by the nanoparticles in the optical-adhesive for light out-coupling and improved heat dissipation. A high current efficiency of ~82.4 cd/A and an external quantum efficiency of ~22.3% are achieved with minimum efficiency roll-off.

19.
Foods ; 9(11)2020 Nov 02.
Article in English | MEDLINE | ID: mdl-33147777

ABSTRACT

Rubus coreanus Miquel (R. coreanus) is a unripen fruit of black raspberry native to eastern Asia. It is used as traditional oriental medicine and supplementary foods for centuries. Previous studies have shown that the R. coreanus extract (RCE) and its main constitute ellagic acid possess diverse biological activities. However, the effects of RCE on antitumor immunity and T cell function were not fully understood. The present study describes the anti-tumor effect of RCE in humanized PD-1 mice by blocking PD-1/PD-L1 interaction. Competitive enzyme-linked immunosorbent assay (ELISA) and pull down assay were performed to elucidate the binding properties of RCE in vitro. Cellular PD-1/PD-L1 blockade activities were measured by T cell receptor (TCR)-induced nuclear factor of activated T cells-luciferase activity in co-cultured cell models with PD-1/NFAT Jurkat and PD-L1/aAPC CHO-K1 cells. The in vivo efficacy of RCE was confirmed in humanized PD-1 mice bearing MC38 colorectal tumor. RCE and ellagic acid dose-dependently block the binding of PD-1 to PD-L1. Moreover, oral administration of RCE showed the potent anti-tumor activity similar to anti-PD-1 antibody. The present study suggests that RCE possesses potent anti-tumor effect via PD-1/PD-L1 blockade, and ellagic acid is the main compound in RCE. Thus, we provide new aspects of RCE as an immunotherapeutic agent.

20.
Nutrients ; 12(10)2020 Oct 19.
Article in English | MEDLINE | ID: mdl-33086629

ABSTRACT

BACKGROUND: Cachexia induced by cancer is a systemic wasting syndrome and it accompanies continuous body weight loss with the exhaustion of skeletal muscle and adipose tissue. Cancer cachexia is not only a problem in itself, but it also reduces the effectiveness of treatments and deteriorates quality of life. However, effective treatments have not been found yet. Although Arctii Fructus (AF) has been studied about several pharmacological effects, there were no reports on its use in cancer cachexia. METHODS: To induce cancer cachexia in mice, we inoculated CT-26 cells to BALB/c mice through subcutaneous injection and intraperitoneal injection. To mimic cancer cachexia in vitro, we used conditioned media (CM), which was CT-26 colon cancer cells cultured medium. RESULTS: In in vivo experiments, AF suppressed expression of interleukin (IL)-6 and atrophy of skeletal muscle and adipose tissue. As a result, the administration of AF decreased mortality by preventing weight loss. In adipose tissue, AF decreased expression of uncoupling protein 1 (UCP1) by restoring AMP-activated protein kinase (AMPK) activation. In in vitro model, CM increased muscle degradation factors and decreased adipocytes differentiation factors. However, these tendencies were ameliorated by AF treatment in C2C12 myoblasts and 3T3-L1 cells. CONCLUSION: Taken together, our study demonstrated that AF could be a therapeutic supplement for patients suffering from cancer cachexia.


Subject(s)
Adipose Tissue/pathology , Arctium/chemistry , Cachexia/drug therapy , Muscle, Skeletal/pathology , Phytotherapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Weight Loss/drug effects , 3T3-L1 Cells , AMP-Activated Protein Kinases/metabolism , Animals , Atrophy/prevention & control , Cachexia/etiology , Cachexia/genetics , Gene Expression/drug effects , Interleukin-6/genetics , Interleukin-6/metabolism , Male , Mice , Mice, Inbred BALB C , Neoplasms/complications , Plant Extracts/isolation & purification , Tumor Cells, Cultured , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...