Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 62(51): e202314978, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-37917039

ABSTRACT

N-heterocyclic carbenes (NHCs) have garnered much attention due to their unique properties, such as strong σ-donating and π-accepting abilities, as well as their transition-metal-like reactivity toward small molecules. In 2015, we discovered that NHCs can react with nitric oxide (NO) gas to form radical adducts that resemble transition metal nitrosyl complexes. To elucidate the analogy between NHC and transition metal NO adducts, here we have undertaken a systematic investigation of the electron- and proton-transfer chemistry of [NHC-NO]⋅ (N-heterocyclic carbene nitric oxide radical) compounds. We have accessed a suite of compounds, comprised of [NHC-NO]+ , [NHC-NO]- , [NHC-NOH]0 , and [NHC-NHOH]+ species. In particular, [NHC-NO]- was isolated as potassium and lithium ion adducts. Most interestingly, a monomeric potassium [NHC-NO]- compound was isolated with the assistance of 18-crown-6, which is the first instance of a monomeric alkali N-oxyl compound to the best of our knowledge. Our results demonstrate that [NHC-NO]⋅ exhibits redox behavior broadly similar to metal nitrosyl complexes, which opens up more possibilities for utilizing NHCs to build on the known reactivity of metal complexes.

2.
J Am Chem Soc ; 143(23): 8527-8532, 2021 06 16.
Article in English | MEDLINE | ID: mdl-33974426

ABSTRACT

Stable organic radicals have been of great academic interest not only in the context of fundamental understanding of reactive intermediates but also because of their numerous applications as functional materials. Apart from the early examples of triphenylmethyl and TEMPO derivatives, reports on air- and water-stable organic radicals are scarce, and their development remains a challenge. Herein, we present the design and synthesis of a novel organic radical based on a 1,2-dicarbonyl scaffold supported by N-heterocyclic carbenes (NHCs). The presented radical cations exhibit remarkable stability toward various harsh conditions, such as the presence of reactive chemicals (reductants, oxidants, strong acids, and bases) or high temperatures, by far exceeding the stability of triphenylmethyl and TEMPO radicals. In addition, physiological conditions including aqueous buffer and blood serum are tolerated. The steric and electronic stabilization provided by the two NHC moieties enabled the successful design of the highly stable radical.

SELECTION OF CITATIONS
SEARCH DETAIL