Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
Add more filters










Publication year range
1.
Bioresour Technol ; 402: 130778, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701985

ABSTRACT

Gracilaria verrucosa is red algae (Rhodophyta) that is particularly significant because of its potential for bioenergy production as a sustainable and environmentally friendly marine bioresource. This study focuses on the production of levulinic acid from G. verrucosa using hydrothermal conversion with an ionic resin Purolite CT269DR as the catalyst. By optimization of the conversion condition, a 30.3 % (22.58 g/L) yield of levulinic acid (LA) (based on carbohydrate content) was obtained at 200 °C for 90 min with 12.5 % biomass and 50 % catalyst loading of biomass quantity. Simultaneously, formic acid yielded 14.0 % (10.42 g/L). The LA yield increased with increasing combined severity (CS) levels under tested ranges. Furthermore, the relationship between CS and LA synthesis was effectively fitted to the nonlinear sigmoidal equation. However, as the yield of sugar decreased, LA yield was linearly increased. Thus, the use of ionic resin as a heterogeneous catalyst presents significant potential for the manufacture of platform chemicals, specifically LA, through the conversion of renewable marine macroalgae.


Subject(s)
Biomass , Levulinic Acids , Seaweed , Levulinic Acids/metabolism , Catalysis , Seaweed/metabolism , Gracilaria/metabolism , Water/chemistry , Temperature , Biotechnology/methods , Ions
2.
J Microbiol Biotechnol ; 34(1): 74-84, 2024 Jan 28.
Article in English | MEDLINE | ID: mdl-37997264

ABSTRACT

The study objective was to evaluate the potential production of polyhydroxyalkanoates (PHAs), a biodegradable plastic material, by Paracoccus haeundaensis for which PHA production has never been reported. To identify the most effective nitrogen-limited culture conditions for PHAs production from this bacterium, batch fermentation using glucose concentrations ranging from 4 g l-1 to 20 g l-1 with a fixed ammonium concentration of 0.5 g l-1 was carried out at 30°C and pH 8.0. A glucose supplement of 12 g l-1 produced the highest PHA concentration (1.6 g l-1) and PHA content (0.63 g g-1) thereby identifying the optimal condition for PHA production from this bacterium. Gas chromatography-mass spectrometry analysis suggests that P. haeundaensis mostly produced copolymer types of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] from glucose concentrations at 12 g l-1 or higher under the nitrogen-limited conditions. When several other single carbon sources were evaluated for the most efficient PHA production, fructose provided the highest biomass (2.8 g l-1), and PHAs (1.29 g l-1) concentrations. Results indicated that this bacterium mostly produced the copolymers P(3HB-co-3HV) from single carbon sources composing a range of 93-98% of 3-hydroxybutyrate and 2-7% of 3-hydroxyvalerate, whereas mannose-supplemented conditions produced the only homopolymer type of P(3HB). However, when propionic acid as a secondary carbon source were supplemented into the media, P. haeundaensis produced the copolymer P(3HB-co-3HV), composed of a 50% maximum monomeric unit of 3-hydroxyvaleric acid (3HV). However, as the concentration of propionic acid increased, cell biomass and PHAs concentrations substantially decreased due to cell toxicity.


Subject(s)
Paracoccus , Pentanoic Acids , Polyesters , Polyhydroxyalkanoates , Polyhydroxybutyrates , Propionates , Polyesters/chemistry , Carbon , Hydroxybutyrates , Glucose , Nitrogen
3.
Bioprocess Biosyst Eng ; 46(6): 839-850, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37004559

ABSTRACT

Eucheuma denticulatum is a red macroalgae with a high carbohydrate content. The fermentable sugars from E. denticulatum were obtained through sequential thermal acid hydrolysis, enzymatic saccharification, and detoxification. Thermal acid hydrolysis of E. denticulatum was optimized under the condition of 10% (w/v) slurry content and 300 mM HNO3 at 121 â„ƒ for 90 min. The maximum monosaccharide concentration after thermal acid hydrolysis was 31.0 g/L with an efficiency (ETAH) of 44.7%. By further enzymatic hydrolysis of pretreated biomass solution under 20 U/mL Cellic CTec2 at 50 â„ƒ and 160 rpm for 72 h, the maximum monosaccharide concentration reached 79.9 g/L with an efficiency of 66.2% (ES). To remove 5-hydroxymethylfurfural (5-HMF), a fermentation inhibitor, absorption using 2% activated carbon was performed for 2 min. Ethanol fermentation was performed using wild-type and high galactose-adapted strains of Saccharomyces cerevisiae, Kluyveromyces marxianus, and Candida lusitaniae. As a result, galactose-adapted strains showed higher ethanol production than wild-type strains. Especially, the fermentation result by adaptively evolved S. cerevisiae produced the highest ethanol of 37.6 g/L and with YEtOH of 0.48 g/g. Moreover, the transcript level of MIG1 in the galactose-adapted strain was slightly lower than that in the wild-type strain. The application of adaptive evolution of microorganisms was efficient for bioethanol production.


Subject(s)
Galactose , Rhodophyta , Saccharomyces cerevisiae , Monosaccharides , Fermentation , Hydrolysis , Ethanol , Biomass
4.
J Environ Manage ; 293: 112919, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34089958

ABSTRACT

Microalgae are known as renewable, potential, and sustainable feedstocks for biofuel production. The present work investigated the efficient valorization of green microalgae Chlorella sp. to produce sugars and 5-hydroxymethylfurfural (5-HMF) using thermochemical conversion with a metal-salt (ferric sulfate) as catalyst using a statistical approach and two-step conversion. A statistical approach with a Box-Behnken design was introduced to optimize the conversion for producing sugars. As a result of optimization, 86.46% sugar yield (68.32% glucose yield) was achieved under the condition of 5% biomass and 0.6 g-catalyst/g-biomass at 155 °C and 40 min. Two-step thermochemical conversion was introduced to produce 5-HMF from microalgae. In the first step, sugars were produced from the above optimum condition; in the second step, sugar hydrolysates were converted into 5-HMF by thermochemical conversion without an additional catalyst. In two-step conversion, the maximum 5-HMF yield (37.23%) was achieved at 170 °C and 60 min from the sugar hydrolysate of microalgae obtained from the first-step thermochemical conversion with ferric sulfate. In conclusion, the microalgae as biomass and ferric sulfate as catalyst have availability and the potential to produce biosugars and platform chemicals.


Subject(s)
Chlorella , Microalgae , Biomass , Ferric Compounds , Furaldehyde/analogs & derivatives
5.
J Biotechnol ; 333: 1-9, 2021 Jun 10.
Article in English | MEDLINE | ID: mdl-33878391

ABSTRACT

Glucose and galactose are monosaccharides obtained from Gloiopeltis furcata (Red algae). A total monosaccharide yield of 62.3 g/L was obtained from G. furcata using thermal acid hydrolysis and enzymatic saccharification. Activated carbon was used to eliminate hydroxymethylfurfural (HMF) from the hydrolysate. Previously obtained monosaccharides are used for ethanol production by Saccharomyces cerevisiae. S. cerevisiae consumes glucose first, then galactose. The methods for reducing fermentation time and increasing the ethanol yield coefficient using the simultaneous consumption of glucose and galactose have been evaluated. Gal3p and Gal80p of S. cerevisiae act as signal transducers that govern the galactose inducer Gal4p mediated transcriptional activation of the Gal gene family. Gal80p binds to Gal4p for transcription deactivation. Therefore, Gal80p was deleted for Gal4p expression without interruption.


Subject(s)
Rhodophyta , Saccharomyces cerevisiae Proteins , Seaweed , Ethanol , Galactose , Genes, Regulator , Repressor Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Transcription Factors/genetics
6.
J Microbiol Biotechnol ; 31(3): 456-463, 2021 Mar 28.
Article in English | MEDLINE | ID: mdl-33323671

ABSTRACT

In this study, the culture conditions for Porphyridium cruentum were optimized to obtain the maximum biomass and lipid productions. The eicosapentaenoic acid content was increased by pH optimization. P. cruentum was cultured with modified F/2 medium in 14-L photobioreactors using a two-phase culture system, in which the green (520 nm) and red (625 nm) light-emitting diodes (LEDs) were used during the first and second phases for biomass production and lipid production, respectively. Various parameters, including aeration rate, light intensity, photoperiod, and pH were optimized. The maximum biomass concentration of 0.91 g dcw/l was obtained with an aeration rate of 0.75 vvm, a light intensity of 300 µmol m-2s-1, and a photoperiod of 24:0 h. The maximum lipid production of 51.8% (w/w) was obtained with a light intensity of 400 µmol m-2s-1 and a photoperiod of 18:6 h. Additionally, the eicosapentaenoic acid and unsaturated fatty acid contents reached 30.6% to 56.2% at pH 6.0.


Subject(s)
Fatty Acids, Unsaturated/biosynthesis , Lipids/biosynthesis , Photobioreactors , Porphyridium/metabolism , Biomass , Hydrogen-Ion Concentration , Light , Microalgae/growth & development , Microalgae/metabolism , Photoperiod , Porphyridium/growth & development
7.
J Biotechnol ; 326: 40-47, 2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33359212

ABSTRACT

The optimal conditions for high biomass and lipid production from Nannochloris atomus were evaluated. The parameters used in this study were light emitting diode (LED) wavelength mixing ratio, the photoperiod, salinity tolerance, and single and combined stresses. Biomass production was monitored in the first phase using red LED (625 nm), followed by lipid production by green LED (520 nm) in the second phase. The optimal conditions were obtained using a single red LED with light:dark durations of 20:4 h and two days of exposure in combined stresses of 1.06 M NaCl and green LED. Under these conditions, 68.6 % (w/w) lipid content were obtained. Compared to the non-stress control, the lipid content was increased by 31.9 %. Linolenic acid (C18:3) the omega-3 fatty acid was produced up to 52.4 % in 1.06 M NaCl as a single stress.


Subject(s)
Chlorophyta , Microalgae , Biomass , Light , Lipids
8.
J Microbiol Biotechnol ; 30(12): 1912-1918, 2020 Dec 28.
Article in English | MEDLINE | ID: mdl-32958731

ABSTRACT

Hyper-thermal (HT) acid hydrolysis of red seaweed Gelidium amansii was performed using 12% (w/v) slurry and an acid mix concentration of 180 mM at 150°C for 10 min. Enzymatic saccharification when using a combination of Celluclast 1.5 L and CTec2 at a dose of 16 U/ml led to the production of 12.0 g/l of reducing sugar with an efficiency of enzymatic saccharification of 13.2%. After the enzymatic saccharification, 2,3-butanediol (2,3-BD) fermentation was carried out using an engineered S. cerevisiae strain. The use of HT acid-hydrolyzed medium with 1.9 g/l of 5-hydroxymethylfurfural showed a reduction in the lag time from 48 to 24 h. The 2,3-BD concentration and yield coefficient at 72 h were 14.8 g/l and 0.30, respectively. Therefore, HT acid hydrolysis and the use of the engineered S. cerevisiae strain can enhance the overall 2,3-BD yields from G. amansii seaweed.


Subject(s)
Butylene Glycols/metabolism , Rhodophyta/metabolism , Saccharomyces cerevisiae/metabolism , Seaweed/metabolism , Acids , Carbohydrates , Fermentation , Furaldehyde/analogs & derivatives , Hydrolysis , Metabolic Engineering , Saccharomyces cerevisiae/genetics
9.
Bioresour Technol ; 313: 123684, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32562965

ABSTRACT

Scenedesmus obliquus, a green microalga of the class Chlorophyceae, has been used to produce biofuels. However, limited research has been reported on platform chemicals that use microalgae as biomass to replace fossil sources. This paper reports on the investigation of levulinic acid (LA) production from lipid-extracted S. obliquus with an acid-catalyzed thermochemical conversion using a statistical experimental approach. For the reaction factors, the highest effect on LA yield resulted from catalyst concentration. The optimized LA yield of 45.63 wt% (70.7 mol%) was achieved with 5 wt% lipid-extracted microalgae and reaction factors of 0.85 M HCl as a catalyst at 180 °C for 10 min. Also, the LA yield as a function of the combined severity factor followed a sigmoid curve. High LA yield resulted from combined severity factors greater than 3.4. These results indicate that the production of platform chemicals may be possible using microalgae feedstocks and thermochemical conversion.


Subject(s)
Microalgae , Scenedesmus , Biofuels , Biomass , Levulinic Acids , Lipids
10.
Bioprocess Biosyst Eng ; 42(9): 1421-1433, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31055665

ABSTRACT

A total monosaccharide concentration of 47.0 g/L from 12% (w/v) Gracilaria verrucosa was obtained by hyper thermal acid hydrolysis with 0.2 M HCl at 140°C for 15 min and enzymatic saccharification with CTec2. To improve galactose utilization, we overexpressed two genes, SNR84 and PGM2, in a Saccharomyces cerevisiae CEN-PK2 using CRISPR/Cas-9. The overexpression of both SNR84 and PGM2 improved galactose utilization and ethanol production compared to the overexpression of each gene alone. The overexpression of both SNR84 and PGM2 and of PGM2 and SNR84 singly in S. cerevisiae CEN-PK2 Cas9 produced 20.0, 18.5, and 16.5 g/L ethanol with ethanol yield (YEtOH) values of 0.43, 0.39, and 0.35, respectively. However, S. cerevisiae CEN-PK2 adapted to high concentration of galactose consumed galactose completely and produced 22.0 g/L ethanol at a YEtOH value of 0.47. The overexpression of both SNR84 and PGM2 increased the transcriptional levels of GAL and regulatory genes; however, the transcriptional levels of these genes were lower than those in S. cerevisiae adapted to high galactose concentrations.


Subject(s)
Biofuels , Ethanol/metabolism , Galactose/metabolism , Gracilaria/chemistry , Microorganisms, Genetically-Modified , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , CRISPR-Cas Systems , Galactose/chemistry , Gene Expression , Hydrolysis , Microorganisms, Genetically-Modified/genetics , Microorganisms, Genetically-Modified/growth & development , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/biosynthesis , Saccharomyces cerevisiae Proteins/genetics
11.
12.
Bioprocess Biosyst Eng ; 42(9): 1517-1526, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31111212

ABSTRACT

In this study, Pavlova lutheri, Chlorella vulgaris, and Porphyridium cruentum were cultured using modified F/2 media in a 1 L flask culture. Various nitrate concentrations were tested to determine an optimal nitrate concentration for algal growth. Subsequently, the effect of light emitted at a specific wavelength on biomass and lipid production by three microalgae was evaluated using various wavelengths of light-emitting diodes (LED). Biomass production by P. lutheri, C. vulgaris, and P. cruentum were the highest with blue, red, and green LED wavelength with 1.09 g dcw/L, 1.23 g dcw/L, and 1.28 g dcw/L on day 14, respectively. Biomass production was highest at the complementary LED wavelength to the color of microalgae. Lipid production by P. lutheri, C. vulgaris, and P. cruentum were the highest with yellow, green, and red LEDs' wavelength, respectively. Eicosapentaenoic acid production by P. lutheri, C. vulgaris, and P. cruentum was 10.35%, 10.14%, and 14.61%, and those of docosahexaenoic acid were 6.09%, 8.95%, and 11.29%, respectively.


Subject(s)
Chlorella vulgaris/growth & development , Fatty Acids, Unsaturated/biosynthesis , Haptophyta/growth & development , Light , Lighting , Microalgae/growth & development , Porphyridium/growth & development , Cell Culture Techniques
13.
Bioresour Technol ; 285: 121323, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30981013

ABSTRACT

The optimal light intensity and photoperiod required to produce high biomass and lipid contents in Isochrysis galbana cultured in a 14-L bioreactor with LED wavelengths was studied. The cell biomass production was monitored in the first phase comprising of mixed blue (465 nm) and red (640 nm) LED wavelengths, then green (520 nm) LED were used in the second phase for lipid production. The optimal light intensity was 400 µmol/m2/s giving a maximum cell biomass of 1.05 g dcw/L and total lipid content of 65.2% (w/w) cultured under 12:12 h L/D cycle. The optimal light intensity of 400 µmol/m2/s was applied at different L/D cycles, the maximum cell biomass (1.25 g dcw/L) and lipid content (71.1% w/w) were obtained at 18:6 h L/D cycle. Stearic acid was the main fatty acid ranging from 42.91 (500 µmol/m2/s) to 65.57% w/w (100 µmol/m2/s) and 53.84 (18:6 h) to 65.44% w/w (24:0 h).


Subject(s)
Haptophyta , Photobioreactors , Biomass , Lipids , Photoperiod
14.
Bioprocess Biosyst Eng ; 42(4): 583-592, 2019 04.
Article in English | MEDLINE | ID: mdl-30788572

ABSTRACT

Optimal conditions of hyper thermal (HT) acid hydrolysis of the Saccharina japonica was determined to a seaweed slurry content of 12% (w/v) and 144 mM H2SO4 at 160 °C for 10 min. Enzymatic saccharification was carried out at 50 °C and 150 rpm for 48 h using the three enzymes at concentrations of 16 U/mL. Celluclast 1.5 L showed the lowest half-velocity constant (Km) of 0.168 g/L, indicating a higher affinity for S. japonica hydrolysate. Pretreatment yielded a maximum monosaccharide concentration of 36.2 g/L and 45.7% conversion from total fermentable monosaccharides of 79.2 g/L with 120 g dry weight/L S. japonica slurry. High cell densities of Clostridium acetobutylicum and Clostridium tyrobutyricum were obtained using the retarding agents KH2PO4 (50 mM) and NaHCO3 (200 mM). Adaptive evolution facilitated the efficient use of mixed monosaccharides. Therefore, adaptive evolution and retarding agents can enhance the overall butanol and butyric acid yields from S. japonica.


Subject(s)
Butanols/metabolism , Butyric Acid/metabolism , Clostridium acetobutylicum , Clostridium tyrobutyricum , Laminaria/chemistry , Clostridium acetobutylicum/genetics , Clostridium acetobutylicum/growth & development , Clostridium tyrobutyricum/genetics , Clostridium tyrobutyricum/growth & development , Directed Molecular Evolution
15.
Appl Biochem Biotechnol ; 188(4): 977-990, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30761446

ABSTRACT

In this study, bioethanol was produced from the seaweed Gelidium amansii as biomass through separate hydrolysis and fermentation (SHF) processes. The SHF processes examined in this study include thermal acid hydrolysis pretreatment, enzymatic saccharification, detoxification, and fermentation. Thermal acid hydrolysis pretreatment was conducted using H2SO4, with a slurry content of 8-16% and treatment time of 15-75 min. The optimal conditions for thermal acid hydrolysis pretreatment were 12% (w/v) seaweed slurry content and 180 mM H2SO4 at 121 °C for 45 min, at which 26.1 g/L galactose and 6.8 g/L glucose were produced. A monosaccharide (mainly glucose) was also obtained from the enzymatic saccharification of thermal acid hydrolysate using 16 U/mL Celluclast 1.5 L enzyme at 45 °C for 36 h. Detoxification was performed using the adsorption method with activated carbon, the overliming method with Ca (OH)2, and the ion exchange method with polyethyleneimine. Among those detoxification methods, activated carbon showed the best performance for hydroxymethylfurfural removal. Ethanol fermentation was performed using 12% (w/v) seaweed hydrolysate with Saccharomyces cerevisiae adapted to galactose as well as various detoxification treatments.


Subject(s)
Seaweed/metabolism , Adsorption , Biomass , Fermentation/physiology , Furaldehyde/analogs & derivatives , Furaldehyde/metabolism , Galactose/metabolism , Glucose/metabolism , Hydrolysis , Monosaccharides/metabolism
16.
Appl Biochem Biotechnol ; 187(4): 1312-1327, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30221316

ABSTRACT

Gracilaria verrucosa, red seaweed, is a promising biomass for bioethanol production due to its high carbohydrate content. The optimal hyper thermal (HT) acid hydrolysis conditions are 12% (w/v) G. verrucosa with 0.2 M H2SO4 at 130 °C for 15 min, with a severity factor of 1.66. This HT acid hydrolysis produces 50.7 g/L monosaccharides. The maximum monosaccharide concentration of 58.0 g/L was achieved with 96.6% of the theoretical monosaccharide production from 120 g dry weight/L G. verrucosa slurry after HT acid hydrolysis and enzymatic saccharification. Fermentation was carried out by removing an inhibitory compound and via yeast adaptation to galactose. Both Pichia stipitis and Kluyveromyces marxianus adapted to galactose were excellent producers, with the ethanol yield (YEtOH) of 0.50 and 29.0 g/L ethanol production. However, the bioethanol productivity with Pichia stipitis adapted to galactose is higher than that with Kluyveromyces marxianus adapted to galactose, being 0.81 and 0.35 g/L/h, respectively. The results from this study can be applied to industrial scale bioethanol production from seaweed.


Subject(s)
Adaptation, Physiological , Ethanol/metabolism , Furaldehyde/analogs & derivatives , Gracilaria/metabolism , Kluyveromyces/metabolism , Pichia/metabolism , Seaweed/metabolism , Fermentation , Furaldehyde/isolation & purification , Furaldehyde/metabolism , Hydrolysis , Kluyveromyces/physiology , Pichia/physiology , Temperature
17.
Bioprocess Biosyst Eng ; 42(3): 415-424, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30470908

ABSTRACT

Acetone, butanol, and ethanol (ABE) were produced following the separate hydrolysis and fermentation (SHF) method using polysaccharides from the green macroalgae Enteromorpha intestinalis as biomass. We focused on the optimization of enzymatic saccharification as pretreatments for the fermentation of E. intestinalis. Pretreatment was carried out with 10% (w/v) seaweed slurry and 270-mM H2SO4 at 121 °C for 60 min. Monosaccharides (mainly glucose) were obtained from enzymatic hydrolysis with a 16-U/mL mixture of Celluclast 1.5 L and Viscozyme L at 45 °C for 36 h. ABE fermentation with 10% (w/v) E. intestinalis hydrolysate was performed using the anaerobic bacteria Clostridium acetobutylicum with either uncontrolled pH, pH controlled at 6.0, or pH controlled initially at 6.0 and then 4.5 after 4 days, which produced ABE contents of 5.6 g/L with an ABE yield (YABE) of 0.24 g/g, 4.8 g/L with an YABE of 0.2 g/g, and 8.5 g/L with an YABE of 0.36 g/g, respectively.


Subject(s)
1-Butanol/metabolism , Acetone/metabolism , Clostridium acetobutylicum/growth & development , Ethanol/metabolism , Seaweed/chemistry , Hydrolysis
18.
Bioresour Technol ; 270: 504-511, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30245321

ABSTRACT

A three-phase culture system combining blue (465 nm) light-emitting diode (LED) wavelength as the first phase, green (550 nm) as the second phase, and temperature stress as the third phase was applied to a Nannochloropsis oceanica culture in 14-L photobioreactors. Microalgal growth promotion parameters were optimized in the first phase, followed by green LED stress for lipid production in the second phase. Maximum biomass and lipid production values of 0.75 gdcw L-1 and 57.6% (w/w) were obtained at an aeration rate of 0.50 vvm, with a light intensity of 250 µmol m-2 s-1 and 24:0 h light/dark cycle. Culture temperatures of 15, 10 and 5 °C were applied in the third phase, where temperature stress induced the production of monounsaturated and polyunsaturated fatty acid synthesis in N. oceanica. The production of α-linolenic acid, eicosapentaenoic acid and docosahexaenoic acid increased by 52% (w/w), 96% (w/w), and 77% (w/w), respectively, at 5 °C in the third phase.


Subject(s)
Biomass , Fatty Acids, Unsaturated/biosynthesis , Lipids/biosynthesis , Stramenopiles/metabolism , Cold Temperature , Eicosapentaenoic Acid/analogs & derivatives , Eicosapentaenoic Acid/biosynthesis , Light , Photobioreactors , Photoperiod , Stramenopiles/growth & development
19.
Bioprocess Biosyst Eng ; 41(7): 953-960, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29572665

ABSTRACT

This study employed a statistical method to obtain optimal hyper thermal acid hydrolysis conditions using Gelidium amansii (red seaweed) as a source of biomass. The optimal hyper thermal acid hydrolysis using G. amansii as biomass was determined as 12% (w/v) slurry content, 358.3 mM H2SO4, and temperature of 142.6 °C for 11 min. After hyper thermal acid hydrolysis, enzymatic saccharification was carried out. The total monosaccharide concentration was 45.1 g/L, 72.2% of the theoretical value of the total fermentable monosaccharides of 62.4 g/L based on 120 g dry weight/L in the G. amansii slurry. To increase ethanol production, 3.8 g/L 5-hydroxymethylfurfural (HMF) in the hydrolysate was removed by treatment with 3.5% (w/v) activated carbon for 2 min and fermented with Pichia stipitis adapted to high galactose concentrations via separate hydrolysis and fermentation. With complete HMF removal and the use of P. stipitis adapted to high galactose concentrations, 22 g/L ethanol was produced (yield 0.50). Fermentation with total HMF removal and yeast adapted to high galactose concentrations increased the fermentation performance and decreased the fermentation time from 96 to 36 h compared to traditional fermentation.


Subject(s)
Biomass , Ethanol/metabolism , Galactose , Pichia/metabolism , Rhodophyta/chemistry , Galactose/chemistry , Galactose/metabolism
20.
Appl Biochem Biotechnol ; 185(4): 1075-1087, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29423868

ABSTRACT

The optimal conditions for acetone-butanol-ethanol (ABE) production were evaluated using waste seaweed from Gwangalli Beach, Busan, Korea. The waste seaweed had a fiber and carbohydrate, content of 48.34%; these are the main resources for ABE production. The optimal conditions for obtaining monosaccharides based on hyper thermal (HT) acid hydrolysis of waste seaweed were slurry contents of 8%, sulfuric acid concentration of 138 mM, and treatment time of 10 min. Enzymatic saccharification was performed using 16 unit/mL Viscozyme L, which showed the highest affinity (Km = 1.81 g/L). After pretreatment, 34.0 g/L monosaccharides were obtained. ABE fermentation was performed with single and sequential fermentation of Clostridium acetobutylicum and Clostridium tyrobutyricum; this was controlled for pH. A maximum ABE concentration of 12.5 g/L with YABE 0.37 was achieved using sequential fermentation with C. tyrobutyricum and C. acetobutylicum. Efficient ABE production from waste seaweed performed using pH-controlled culture broth and sequential cell culture.


Subject(s)
Acetone/metabolism , Butanols/metabolism , Clostridium acetobutylicum/growth & development , Clostridium tyrobutyricum/growth & development , Ethanol/metabolism , Seaweed/chemistry , Hydrogen-Ion Concentration , Republic of Korea
SELECTION OF CITATIONS
SEARCH DETAIL
...