Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Int J Biol Sci ; 20(7): 2592-2606, 2024.
Article in English | MEDLINE | ID: mdl-38725855

ABSTRACT

Transcriptional coactivator with a PDZ-binding motif (TAZ) plays a key role in normal tissue homeostasis and tumorigenesis through interaction with several transcription factors. In particular, TAZ deficiency causes abnormal alveolarization and emphysema, and persistent TAZ overexpression contributes to lung cancer and pulmonary fibrosis, suggesting the possibility of a complex mechanism of TAZ function. Recent studies suggest that nuclear factor erythroid 2-related factor 2 (NRF2), an antioxidant defense system, induces TAZ expression during tumorigenesis and that TAZ also activates the NRF2-mediated antioxidant pathway. We thus thought to elucidate the cross-regulation of TAZ and NRF2 and the underlying molecular mechanisms and functions. TAZ directly interacted with NRF2 through the N-terminal domain and suppressed the transcriptional activity of NRF2 by preventing NRF2 from binding to DNA. In addition, the return of NRF2 to basal levels after signaling was inhibited in TAZ deficiency, resulting in sustained nuclear NRF2 levels and aberrantly increased expression of NRF2 targets. TAZ deficiency failed to modulate optimal NRF2 signaling and concomitantly impaired lysosomal acidification and lysosomal enzyme function, accumulating the abnormal autophagy vesicles and reactive oxygen species and causing protein oxidation and cellular damage in the lungs. TAZ restoration to TAZ deficiency normalized dysregulated NRF2 signaling and aberrant lysosomal function and triggered the normal autophagy-lysosomal pathway. Therefore, TAZ is indispensable for the optimal regulation of NRF2-mediated autophagy-lysosomal pathways and for preventing pulmonary damage caused by oxidative stress and oxidized proteins.


Subject(s)
Autophagy , Lysosomes , NF-E2-Related Factor 2 , NF-E2-Related Factor 2/metabolism , Autophagy/physiology , Lysosomes/metabolism , Animals , Mice , Humans , Transcriptional Coactivator with PDZ-Binding Motif Proteins/metabolism , Signal Transduction , Transcription Factors/metabolism , Transcription Factors/genetics , Reactive Oxygen Species/metabolism , Adaptor Proteins, Signal Transducing
2.
Eur Radiol ; 34(3): 2062-2071, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37658885

ABSTRACT

OBJECTIVES: We aimed to evaluate whether deep learning-based detection and quantification of brain metastasis (BM) may suggest treatment options for patients with BMs. METHODS: The deep learning system (DLS) for detection and quantification of BM was developed in 193 patients and applied to 112 patients that were newly detected on black-blood contrast-enhanced T1-weighted imaging. Patients were assigned to one of 3 treatment suggestion groups according to the European Association of Neuro-Oncology (EANO)-European Society for Medical Oncology (ESMO) recommendations using number and volume of the BMs detected by the DLS: short-term imaging follow-up without treatment (group A), surgery or stereotactic radiosurgery (limited BM, group B), or whole-brain radiotherapy or systemic chemotherapy (extensive BM, group C). The concordance between the DLS-based groups and clinical decisions was analyzed with or without consideration of targeted agents. The performance of distinguishing high-risk (B + C) was calculated. RESULTS: Among 112 patients (mean age 64.3 years, 63 men), group C had the largest number and volume of BM, followed by group B (4.4 and 851.6 mm3) and A (1.5 and 15.5 mm3). The DLS-based groups were concordant with the actual clinical decisions, with an accuracy of 76.8% (86 of 112). Modified accuracy considering targeted agents was 81.3% (91 of 112). The DLS showed 95% (82/86) sensitivity and 81% (21/26) specificity for distinguishing the high risk. CONCLUSION: DLS-based detection and quantification of BM have the potential to be helpful in the determination of treatment options for both low- and high-risk groups of limited and extensive BMs. CLINICAL RELEVANCE STATEMENT: For patients with newly diagnosed brain metastasis, deep learning-based detection and quantification may be used in clinical settings where prompt and accurate treatment decisions are required, which can lead to better patient outcomes. KEY POINTS: • Deep learning-based brain metastasis detection and quantification showed excellent agreement with ground-truth classifications. • By setting an algorithm to suggest treatment based on the number and volume of brain metastases detected by the deep learning system, the concordance was 81.3%. • When dividing patients into low- and high-risk groups, the sensitivity for detecting the latter was 95%.


Subject(s)
Brain Neoplasms , Deep Learning , Radiosurgery , Male , Humans , Middle Aged , Cohort Studies , Diagnostic Imaging , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/therapy , Brain Neoplasms/pathology , Radiosurgery/adverse effects , Retrospective Studies , Magnetic Resonance Imaging/methods
3.
Food Chem X ; 20: 100918, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38144855

ABSTRACT

Enzymatic modifications have been applied in citrus to enhance their physicochemical and biological properties and reduce their bitterness. Notwithstanding, research on the combination of enzyme treatment of yuzu is lacking. In this study, yuzu was treated with a combination of isolated cellulase NY203, pectinase UF, and cellulase KN, and this enzymatic treatment was found to increase monosaccharide, naringenin, and hesperetin levels. In contrast, dietary fiber, cellulose, hemicellulose, lignin, and pectin levels were decreased. Moreover, the enzymes disintegrated the inner and outer surface structures and chemical bonding of yuzu, thus improving its solubility rate, water-holding capacity, oil-adsorption capacity, cholesterol-binding capacity, and water-swelling capacity. Furthermore, NY203 + UF + KN combination treatment reduced the bitterness of treated yuzu by 50 % compared with the control. Additionally, NY203 + UF + KN treatment yielded a 28 % decrease in lipid accumulation and two-fold higher lipolytic activity in 3T3L-1 adipocytes. These findings are potentially beneficial to the food/nutraceutical industries regarding functional yuzu powder production.

4.
Viruses ; 15(4)2023 03 31.
Article in English | MEDLINE | ID: mdl-37112876

ABSTRACT

Sacbrood virus (SBV) infection has emerged as a remarkable threat to Apis cerana colonies in South Korea, necessitating prompt control measures. In this study, RNA interference (RNAi) targeting the VP3 gene was developed to assess its safety and efficacy in protecting and treating SBV in vitro and in infected colonies in South Korean apiaries. The efficacy of VP3 double-stranded RNA (dsRNA) was demonstrated in laboratory-based experiments, wherein infected larvae treated with VP3 dsRNA exhibited a 32.7% increase in survival rate compared to untreated larvae. Data from a large-scale field trial indicate the efficacy of dsRNA treatment since none of the treated colonies had symptomatic SBV infections, whereas disease was observed in 43% (3/7) of the control colonies. In the 102 colonies exhibiting symptoms of SBV disease, RNAi treatment provided partial protection with weekly treatment, prolonging the survival period of colonies to 8 months compared to 2 months in colonies treated at 2- and 4-week intervals. Therefore, this study demonstrated that RNAi is a valuable tool for preventing SBV disease outbreaks in healthy and low-level SBV-infected colonies.


Subject(s)
RNA Viruses , Virus Diseases , Animals , Bees/genetics , Larva , RNA Viruses/genetics , RNA, Double-Stranded/genetics
5.
Appl Psychophysiol Biofeedback ; 48(2): 207-216, 2023 06.
Article in English | MEDLINE | ID: mdl-36445544

ABSTRACT

Sleep health has become an important healthy lifestyle. Research has shown that almost one-fifth of the Korean adult population does not have sufficient sleep. The lack of sleep is associated with significant medical, psychological, social, and economic issues. People are not only yearning for sufficient sleep but the quality of sleep as well. Usually, the obvious choice will be the use of pharmaceuticals however, these often have various side effects, and the lasting use of these medications could become a concern. Therefore, new non-drug alternatives are sought after. Audio brain entrainment is a procedure that modules neural activities by synchronizing brainwave frequency with pulse tones. By producing frequency tones for the deep sleep stage, it promotes a good night's sleep. In this paper, we developed a pillow integrated with the audio speakers that produce alpha and theta beats that should help improve sleep. Sleep polysomnography was performed on 10 people to compare the effects of the audio stimulus. Initial results showed a positive effect on sleep onset latency, indicating that sleep induction happened. This noninvasive stimulation technique can be a promising candidate for wearable bioelectronics medicine and further neuroscience research.


Subject(s)
Sleep Initiation and Maintenance Disorders , Adult , Humans , Sleep Initiation and Maintenance Disorders/therapy , Sleep/physiology , Polysomnography , Brain , Republic of Korea
6.
Immune Netw ; 22(4): e33, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36081527

ABSTRACT

Suppressors of cytokine signaling (SOCS) have emerged as potential regulators of macrophage function. We have investigated mechanisms of SOCS3 action on type 2 macrophage (M2) differentiation induced by glucocorticoid using human monocytic cell lines and mouse bone marrow-derived macrophages. Treatment of THP1 monocytic cells with dexamethasone (Dex) induced ROS generation and M2 polarization promoting IL-10 and TGF-ß production, while suppressing IL-1ß, TNF-α and IL-6 production. SOCS3 over-expression reduced, whereas SOCS3 ablation enhanced IL-10 and TGF-ß induction with concomitant regulation of ROS. As a mediator of M2 differentiation, glucocorticoid-induced leucine zipper (GILZ) was down-regulated by SOCS3 and up-regulated by shSOCS3. The induction of GILZ and IL-10 by Dex was dependent on ROS and p38 MAPK activity. Importantly, GILZ ablation led to the inhibition of ROS generation and anti-inflammatory cytokine induction by Dex. Moreover, GILZ knock-down negated the up-regulation of IL-10 production induced by shSOCS3 transduction. Our data suggest that SOCS3 targets ROS- and p38-dependent GILZ expression to suppress Dex-induced M2 polarization.

7.
BMB Rep ; 55(4): 198-203, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35321782

ABSTRACT

As negative regulators of cytokine signaling pathways, suppressors of cytokine signaling (SOCS) proteins have been reported to possess both pro-tumor and anti-tumor functions. Our recent studies have demonstrated suppressive effects of SOCS1 on epithelial to mesenchymal signaling in colorectal cancer cells in response to fractionated ionizing radiation or oxidative stress. The objective of the present study was to determine the radiosensitizing action of SOCS1 as an anti-tumor mechanism in colorectal cancer cell model. In HCT116 cells exposed to ionizing radiation, SOCS1 over-expression shifted cell cycle arrest from G2/M to G1 and promoted radiation-induced apoptosis in a p53-dependent manner with down-regulation of cyclin B and up-regulation of p21. On the other hand, SOCS1 knock-down resulted in a reduced apoptosis with a decrease in G1 arrest. The regulatory action of SOCS1 on the radiation response was mediated by inhibition of radiation-induced Jak3/STAT3 and Erk activities, thereby blocking G1 to S transition. Radiation-induced early ROS signal was responsible for the activation of Jak3/Erk/STAT3 that led to cell survival response. Our data collectively indicate that SOCS1 can promote radiosensitivity of colorectal cancer cells by counteracting ROS-mediated survival signal, thereby blocking cell cycle progression from G1 to S. The resulting increase in G1 arrest with p53 activation then contributes to the promotion of apoptotic response upon radiation. Thus, induction of SOCS1 expression may increase therapeutic efficacy of radiation in tumors with low SOCS1 levels. [BMB Reports 2022; 55(4): 198-203].


Subject(s)
Colorectal Neoplasms , Tumor Suppressor Protein p53 , Apoptosis , Cell Cycle , Cell Line, Tumor , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/radiotherapy , Cytokines/metabolism , Humans , Radiation Tolerance , Reactive Oxygen Species/metabolism , Suppressor of Cytokine Signaling 1 Protein/genetics , Suppressor of Cytokine Signaling 1 Protein/metabolism , Suppressor of Cytokine Signaling Proteins/metabolism
8.
AMB Express ; 11(1): 108, 2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34287737

ABSTRACT

Ellagic acid glucoside was synthesized via transglucosylation using sucrose and glucansucrase derived from Leuconostoc mesenteroides B-512 FMCM. After such enzymatic synthesis, the product was purified by 50% ethyl acetate fraction and C18 column chromatography. Modification of ellagic acid glucoside was verified by LC-MS/MS at m/z 485.1 (M + Na)- and m/z 531.1 (M + 3Na)-. The yield of ellagic acid glucoside was 69% (3.47 mM) by response surface methodology using 150 mM sucrose, 300 mU/mL glucansucrase, and 5 mM ellagic acid. The synthesized ellagic acid glucoside showed improved water solubility, up to 58% higher brain nerve cell (SH-SY5Y) protective effect, threefold higher cortisol reducing effect, and fourfold stronger inhibitory effect on acetylcholinesterase (AChE) than ellagic acid. These results indicate that ellagic acid glucoside could be used as a neuroprotective agent.

9.
Food Sci Biotechnol ; 30(1): 117-127, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33552623

ABSTRACT

This research focused on physiochemical and nutritional properties and functional characterization of three cultivars of yuzu-Native, Tadanishiki yuzu, and Namhae1-during different seasons. According to the cultivar and harvest time, yuzu cultivars were analyzed for free sugar, dietary fiber, hesperidin, naringin, and flavonoid content as well as antioxidant and antihypertensive activity. During November, Namhae1 exhibited the highest fruit weight, °Brix/acidity ratio, and total dietary fiber content. Tadanishiki contained the highest fructose and sucrose levels, pectin and cellulose contents, and soluble dietary fiber. Tadanishiki also had the highest hesperidin content in October, while the naringin content and antioxidant activity were the greatest in November. Antihypertensive activity was also the strongest for Tadanishiki, which was picked in October and November. These results indicated that Tadanishiki in October or November was the best for consumption or favorable processing because of its excellent product quality and high levels of nutritional and functional compounds.

10.
BMB Rep ; 53(12): 640-645, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33172542

ABSTRACT

Suppressors of cytokine signaling (SOCS) exhibit diverse antiinflammatory effects. Since ROS acts as a critical mediator of inflammation, we have investigated the anti-inflammatory mechanisms of SOCS via ROS regulation in monocytic/macrophagic cells. Using PMA-differentiated monocytic cell lines and primary BMDMs transduced with SOCS1 or shSOCS1, the LPS/TLR4-induced inflammatory signaling was investigated by analyzing the levels of intracellular ROS, antioxidant factors, inflammasome activation, and pro-inflammatory cytokines. The levels of LPS-induced ROS and the production of pro-inflammatory cytokines were notably down-regulated by SOCS1 and up-regulated by shSOCS1 in an NAC-sensitive manner. SOCS1 up-regulated an ROS-scavenging protein, thioredoxin, via enhanced expression and binding of NRF-2 to the thioredoxin promoter. SOCS3 exhibited similar effects on NRF-2/thioredoxin induction, and ROS downregulation, resulting in the suppression of inflammatory cytokines. Notably thioredoxin ablation promoted NLRP3 inflammasome activation and restored the SOCS1-mediated inhibition of ROS and cytokine synthesis induced by LPS. The results demonstrate that the anti-inflammatory mechanisms of SOCS1 and SOCS3 in macrophages are mediated via NRF-2-mediated thioredoxin upregulation resulting in the downregulation of ROS signal. Thus, our study supports the anti-oxidant role of SOCS1 and SOCS3 in the exquisite regulation of macrophage activation under oxidative stress. [BMB Reports 2020; 53(12): 640-645].


Subject(s)
Inflammasomes/metabolism , Suppressor of Cytokine Signaling 1 Protein/metabolism , Animals , Anti-Inflammatory Agents/immunology , Cytokines/analysis , Cytokines/metabolism , Humans , Inflammation/metabolism , Macrophages/immunology , Macrophages/metabolism , Mice , Mice, Inbred C57BL , NF-E2-Related Factor 2/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein , Promoter Regions, Genetic/genetics , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Suppressor of Cytokine Signaling 1 Protein/physiology , Suppressor of Cytokine Signaling Proteins/metabolism , Suppressor of Cytokine Signaling Proteins/physiology , THP-1 Cells , Thioredoxins/metabolism , Thioredoxins/pharmacology , Toll-Like Receptor 4
11.
Int J Med Sci ; 17(5): 632-639, 2020.
Article in English | MEDLINE | ID: mdl-32210713

ABSTRACT

Background: Pumpkin (Curcubita sp.) is a natural product that is commonly used in folk medicine. However, the inhibitory effect and molecular mechanisms of tendril of Cucurbita Moschata Duch. (TCMD) on osteoclast differentiation have yet to be clearly elucidated. Thus, the present study aimed to investigate the effect and underlying mechanism of water extract of TCMD on osteoclast differentiation. Methods: Bone marrow-derived macrophages (BMDMs), osteoclast precursors, were cultured with macrophage colony stimulating factor (M-CSF) 30 ng/ml and receptor activator of nuclear factor-kappa B ligand (RANKL) 100 ng/ml for four days. We investigated the effect of TCMD on RANKL-induced osteoclast differentiation, tartrate-resistant acid phosphatase (TRAP) staining, F-actin ring formation, and bone resorption assay. RANKL signaling pathways were determined through Western blotting, and osteoclast differentiation marker genes were confirmed by Real-time PCR. Results: TCMD inhibited the RANKL-induced osteoclast differentiation in a dose-dependent manner without cytotoxicity. Further, F-actin ring formation and bone resorption were reduced by TCMD in RANKL-treated BMDMs. In addition, TCMD decreased the phosphorylation of p38 and ERK as well as the expression of osteoclast-related genes in BMDMs treated with RANKL. Conclusion: These findings suggest that TCMD may have preventive and therapeutic effects for destructive bone diseases.


Subject(s)
Bone Resorption/drug therapy , Cucurbita , Osteoclasts/drug effects , Osteogenesis/drug effects , Plant Extracts/pharmacology , Animals , Cell Differentiation/drug effects , Drug Evaluation, Preclinical , MAP Kinase Signaling System/drug effects , Male , Mice , Phytotherapy , Plant Extracts/therapeutic use , Primary Cell Culture , RANK Ligand
12.
Food Sci Biotechnol ; 28(6): 1801-1809, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31807353

ABSTRACT

The aim of this study is to investigate combined effects of mineral trioxide aggregate (MTA) and propolis on odontoblastic differentiation of human dental pulp stem cells (DPSCs) and to find a signaling pathway involved. Combination of MTA and propolis significantly up-regulated the expression of DSPP and DMP1, and facilitated a mineral nodule formation (p < 0.05). Treatments with MTA, propolis or combined increased the phosphorylation of extracellular signal-regulated kinases (ERK), one of mitogen-activated protein kinases signaling cascades during odontogenic differentiation of DPSCs (p < 0.05), and U0126, an inhibitor of ERK, decreased calcium deposits (p < 0.05). Combination of MTA and propolis promotes odontogenic differentiation and mineralization of DPSCs through ERK pathway.

13.
Invest Ophthalmol Vis Sci ; 60(14): 4784-4791, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31743935

ABSTRACT

Purpose: To investigate the antifibrotic effects of sakuraso-saponin on a primary culture of human pterygium fibroblasts (HPFs) and normal human Tenon fibroblasts (HTFs) as compared to the effects of mitomycin C (MMC). Methods: Samples of HPFs and HTFs were acquired during primary pterygium surgery. Cell toxicity, cell migration, and expression of α-smooth muscle actin (α-SMA) and transforming growth factor-ß (TGF-ß) were evaluated in HPFs and HTFs after treatment with sakuraso-saponin and MMC. To determine the possible mechanisms underlying the antifibrotic effects of sakuraso-saponin, the expression of phosphorylated Smad2/3 was evaluated after treatment with sakuraso-saponin and MMC. Results: MMC (≥200 µg/mL) significantly reduced cell viability in both HPFs and HTFs, whereas sakuraso-saponin (1.0 µg/mL) decreased cell viability in HPFs only. Both sakuraso-saponin (1.0 µg/mL) and MMC (200 µg/mL) treatment significantly reduced the expression of α-SMA and TGF-ß in HPFs (P < 0.05). It is interesting that the expression of α-SMA and TGF-ß after treatment with sakuraso-saponin was significantly lower than that after treatment with MMC (P < 0.05). The expression of phosphorylated Smad2/3 protein was decreased by sakuraso-saponin and MMC in HPFs. Both sakuraso-saponin and MMC inhibited TGF-ß1-induced cell migration as compared to the control in HPFs. Conclusions: Sakuraso-saponin could be more effective than MMC for the reduction of fibrosis in HPFs. Our results might present the basis for its use as a promising candidate drug for adjuvant therapy to prevent recurrent pterygium after surgery.


Subject(s)
Alkylating Agents/pharmacology , Fibroblasts/drug effects , Mitomycin/pharmacology , Pterygium/drug therapy , Pterygium/pathology , Saponins/pharmacology , Actins/metabolism , Blotting, Western , Cell Movement/drug effects , Cell Survival/drug effects , Cells, Cultured , Fibroblasts/metabolism , Fibrosis/drug therapy , Humans , Phosphorylation , Pterygium/surgery , Smad2 Protein/metabolism , Smad4 Protein/metabolism , Tenon Capsule/cytology , Transforming Growth Factor beta/metabolism
14.
Plant Sci ; 289: 110254, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31623785

ABSTRACT

ICE1 (Inducer of CBF Expression 1) is a regulator of cold-induced transcriptome, which plays an important role in plant cold response pathway. To enhance the cold tolerance of Zoysia japonica, one of the warm-season turfgrasses, it is helpful to understand the cold response mechanism in Zoysia japonica. We identified stress-responsive ZjICE1 from Zoysia japonica and characterized its function in cold stress. Our results showed that ZjICE1 shared the typical feature of ICE homolog proteins belonging to a nucleic protein. Transactivation activity assay revealed that ZjICE1 bound to the MYC cis-element in the ZjDREB1's promotor. The ZjICE1 overexpressed transgenic Arabidopsis showed enhanced tolerance to cold stress with an increases in SOD, POD, and free proline content and reduction in MDA content. They also induced the transcripts abundance of cold-responsive genes (CBF1, CBF2, CBF3, COR47A, KIN1, and RD29A) after cold treatment. These results suggest that ZjICE1 is a positive regulator in Zoysia japonica plant during cold stress and can be a useful gene for the molecular breeding program to develop the cold tolerant zoysiagrass. Furthermore, the ZjICE1 also conferred resistance to salt and drought stresses, providing the better understanding of the basic helix-loop-helix (bHLH) gene family in abiotic stress responses.


Subject(s)
Acclimatization/genetics , Arabidopsis/physiology , Cold-Shock Response/genetics , Plant Proteins/genetics , Poaceae/physiology , Transcription Factors/genetics , Amino Acid Sequence , Arabidopsis/genetics , Cold Temperature , Phylogeny , Plant Proteins/chemistry , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/physiology , Poaceae/genetics , Sequence Alignment , Transcription Factors/chemistry , Transcription Factors/metabolism
15.
Nat Commun ; 10(1): 421, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30679431

ABSTRACT

Insulin regulates blood glucose levels by binding its receptor and stimulating downstream proteins through the insulin receptor substrate (IRS). Impaired insulin signalling leads to metabolic syndrome, but the regulation of this process is not well understood. Here, we describe a novel insulin signalling regulatory pathway involving TAZ. TAZ upregulates IRS1 and stimulates Akt- and Glut4-mediated glucose uptake in muscle cells. Muscle-specific TAZ-knockout mice shows significantly decreased Irs1 expression and insulin sensitivity. Furthermore, TAZ is required for Wnt signalling-induced Irs1 expression, as observed by decreased Irs1 expression and insulin sensitivity in muscle-specific APC- and TAZ-double-knockout mice. TAZ physically interacts with c-Jun and Tead4 to induce Irs1 transcription. Finally, statin administration decreases TAZ, IRS1 level and insulin sensitivity. However, in myoblasts, the statin-mediated decrease in insulin sensitivity is counteracted by the expression of a constitutively active TAZ mutant. These results suggest that TAZ is a novel insulin signalling activator that increases insulin sensitivity and couples Hippo/Wnt signalling and insulin sensitivity.


Subject(s)
Insulin Receptor Substrate Proteins/metabolism , Insulin Resistance/physiology , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Transcription Factors/metabolism , Acyltransferases , Animals , Blood Glucose , Cell Line , Gene Expression Profiling , Gene Expression Regulation , Glucose/metabolism , Glucose Transporter Type 4/metabolism , HEK293 Cells , Hippo Signaling Pathway , Humans , Insulin/metabolism , Mice , Mice, Knockout , Muscle Cells/metabolism , Muscle, Skeletal/metabolism , Mutagenesis, Site-Directed , Myoblasts/metabolism , Pharmaceutical Vehicles/administration & dosage , Simvastatin/administration & dosage , Simvastatin/pharmacology , Transcription Factors/genetics , Up-Regulation , Wnt Signaling Pathway
16.
Sci Rep ; 7(1): 16946, 2017 12 05.
Article in English | MEDLINE | ID: mdl-29208963

ABSTRACT

CD4+ T cells play key roles in the regulation of immune responses against pathogenic infectious antigens via development into effector T helper and induced regulatory T (iTreg) cells. Particularly, CD4+CD25+Foxp3+ iTreg cells are crucial for maintaining immune homeostasis and controlling inflammatory diseases. Anti-inflammatory drugs that enhance iTreg cell generation would be effective at preventing and treating inflammatory and autoimmune diseases. In this study, we examined whether anti-malarial and anti-arthritic amodiaquine (AQ) could affect iTreg cell development. Despite the anti-proliferative activity of AQ, AQ only moderately decreased iTreg cell proliferation but substantially increased IL-2 production by iTreg cells. Furthermore, AQ dose-dependently increased iTreg cell development and significantly upregulated iTreg cell markers including CD25. Interestingly, CD25 expression was decreased at later stages of iTreg cell development but was sustained in the presence of AQ, which was independent of IL-2 signaling pathway. AQ directly increased CD25 gene transcription by enhancing the DNA-binding and transcriptional activity of nuclear receptor 4 A. Most importantly, in vivo administration of AQ attenuated inflammatory colitis, resulted in the increased iTreg cells and decreased inflammatory cytokines. The ability of anti-malarial AQ to potentiate iTreg cell development makes it a promising drug for preventing and treating inflammatory and autoimmune diseases.


Subject(s)
Amodiaquine/pharmacology , Forkhead Transcription Factors/metabolism , Interleukin-2 Receptor alpha Subunit/metabolism , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/physiology , Animals , Cell Proliferation/drug effects , Colitis/drug therapy , Colitis/etiology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Interleukin-2/metabolism , Interleukin-2 Receptor alpha Subunit/genetics , Male , Mice, Inbred C57BL , Mice, Knockout , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 2/genetics , Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism , Receptors, Interleukin-2/metabolism , Receptors, Steroid/genetics , Receptors, Steroid/metabolism , Receptors, Thyroid Hormone/genetics , Receptors, Thyroid Hormone/metabolism , Transforming Growth Factor beta/pharmacology
17.
BMC Immunol ; 18(1): 48, 2017 Dec 08.
Article in English | MEDLINE | ID: mdl-29221433

ABSTRACT

BACKGROUND: To investigate natural killer (NK) cell activity, circulating cytokine level and peripheral blood mononuclear cell (PBMC) cytokine production status in critically ill patients. METHODS: Blood samples were collected <24 h after admission from 24 intensive care unit (ICU) patients and 24 age-, sex-, and body mass index (BMI)-matched healthy controls. Serum cytokine concentrations and cytokine production by PBMCs and lipopolysaccharide (LPS)-stimulated PBMCs were measured. RESULTS: The ICU group showed lower NK cell activity than the controls under all conditions and an absence of interferon (IFN)-γ. After adjusting for triglycerides, LDL- and HDL-cholesterol, and glucose, the ICU group exhibited lower serum levels of albumin and interleukin (IL)-12 and higher leukocyte counts and hs-CRP and IL-6 levels than the controls. Non-stimulated PBMCs from ICU patients secreted significantly greater amounts of IL-6 and IL-1ß than the controls; however, the production of IL-6, TNF-α and IL-1ß in response to LPS stimulation was significantly lower in the ICU group. CONCLUSIONS: Significant reductions in NK cell activity and serum IL-12 level, an absence of serum IFN-γ, and decreased cytokine production from LPS-stimulated PBMCs indicate the hyporesponsiveness of NK cells and an impaired early phase inflammatory response in critically ill patients (ClinicalTrials.gov NCT02565589 :). Retrospectively registered; October 1, 2015.


Subject(s)
Critical Illness , Cytokines/blood , Inflammation/immunology , Killer Cells, Natural/immunology , Leukocytes, Mononuclear/immunology , Adjuvants, Immunologic/pharmacology , Aged , Case-Control Studies , Female , Humans , Intensive Care Units , Killer Cells, Natural/drug effects , Leukocytes, Mononuclear/drug effects , Lipopolysaccharides/pharmacology , Male , Middle Aged
18.
Chem Biol Interact ; 273: 160-170, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28625492

ABSTRACT

Mansorins and mansonones have been isolated from Mansonia gagei heartwoods, a traditional herbal medicine used to treat heart failure, and characterized to have anti-oxidant, anti-bacterial, anti-tumor, and anti-estrogenic activities. However, there is as yet no information on their effects on adipogenesis and lipid storage associated with heart disease. In this study, we investigated the effects of naturally occurring compounds on adipogenic differentiation and sought to develop more potent anti-adipogenic compound. We found that mansonone G (MG) suppressed adipocyte differentiation of 3T3-L1 cells, with a 40% decrease in lipid accumulation at 10 µM. MG derivatives including ether and ester analogues were then synthesized and assayed for their ability to suppress adipogenesis. A novel MG derivative, chlorobenzoyl MG (CBMG) most potently suppressed adipocyte differentiation with the decreased level of aP2 and adiponectin. Interestingly, CBMG treatment decreased the expression of CCAAT enhancer binding protein-α (C/EBPα) and peroxisome proliferator-activated receptor-γ (PPARγ). Further analysis confirmed that CBMG suppressed both the expression and activity of PPARγ, a master regulator of adipogenesis, and subsequently led to decreases in transcription of C/EBPα, aP2, and adiponectin in adipogenesis, thereby attenuating adipocyte differentiation. Our results suggest that a novel MG derivative, CBMG may have beneficial applications in the control of obesity through the suppression of PPARγ-induced adipocyte differentiation and lipid accumulation.


Subject(s)
Adipocytes/cytology , Adipocytes/drug effects , Adipogenesis/drug effects , Naphthoquinones/pharmacology , PPAR gamma/antagonists & inhibitors , 3T3-L1 Cells , Animals , Cell Survival/drug effects , Dose-Response Relationship, Drug , Mice , Molecular Structure , Naphthoquinones/chemistry , PPAR gamma/metabolism , Structure-Activity Relationship
19.
Aging Cell ; 16(5): 1035-1042, 2017 10.
Article in English | MEDLINE | ID: mdl-28613007

ABSTRACT

Transcriptional coactivator with PDZ-binding motif (TAZ) directly interacts with transcription factors and regulates their transcriptional activity. Extensive functional studies have shown that TAZ plays critical regulatory roles in stem cell proliferation, differentiation, and survival and also modulates the development of organs such as the lung, kidney, heart, and bone. Despite the importance of TAZ in stem cell maintenance, TAZ function has not yet been evaluated in spermatogenic stem cells of the male reproductive system. Here, we investigated the expression and functions of TAZ in mouse testis. TAZ was expressed in spermatogenic stem cells; however, its deficiency caused significant structural abnormalities, including atrophied tubules, widened interstitial space, and abnormal Leydig cell expansion, thereby resulting in lowered sperm counts and impaired fertility. Furthermore, TAZ deficiency increased the level of apoptosis and senescence in spermatogenic cells and Leydig cells upon aging. The expression of senescence-associated ß-galactosidase (SA-ßgal), secretory phenotypes, and cyclin-dependent kinase inhibitors (p16, p19, and p21) significantly increased in the absence of TAZ. TAZ downregulation in testicular cells further increased SA-ßgal and p21 expression induced by oxidative stress, whereas TAZ overexpression decreased p21 induction and prevented senescence. Mechanistic studies showed that TAZ suppressed DNA-binding activity of p53 through a direct interaction and thus attenuated p53-induced p21 gene transcription. Our results suggested that TAZ may suppress apoptosis and premature senescence in spermatogenic cells by inhibiting the p53-p21 signaling pathway, thus playing important roles in the maintenance and control of reproductive function.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Aging/genetics , Cyclin-Dependent Kinase Inhibitor p21/genetics , Oligospermia/genetics , Spermatogonia/metabolism , Tumor Suppressor Protein p53/genetics , Adaptor Proteins, Signal Transducing/deficiency , Aging/metabolism , Animals , Apoptosis , Cellular Senescence , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Cyclin-Dependent Kinase Inhibitor p19/genetics , Cyclin-Dependent Kinase Inhibitor p19/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Gene Expression Regulation, Developmental , Leydig Cells/metabolism , Leydig Cells/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Oligospermia/metabolism , Oligospermia/physiopathology , Signal Transduction , Spermatogenesis/genetics , Spermatogonia/pathology , Stem Cells/metabolism , Stem Cells/pathology , Trans-Activators , Tumor Suppressor Protein p53/metabolism , beta-Galactosidase/genetics , beta-Galactosidase/metabolism
20.
Sci Rep ; 7: 42144, 2017 02 07.
Article in English | MEDLINE | ID: mdl-28169371

ABSTRACT

Interferon-γ (IFN-γ), a critical inflammatory cytokine, is primarily produced by T helper 1 (Th1) cells and accelerates the pathogenesis of inflammatory colitis. Pharmacological suppression of IFN-γ production attenuates dysregulated inflammatory responses and may be beneficial for treating inflammatory disease. In this study, we aimed to discover potent anti-inflammatory compounds that suppress IFN-γ production and found that the novel benzoxazole derivatives, 2-((3,4-dichlorophenyl) amino) benzo[d]xazol-5-ol (DCPAB) and 2-((3,4-hydroxyphenyl) amino) benzo[d]xazol-5-ol (HPAB), suppressed IFN-γ production by T cells. Treatment of CD4+ T cells with DCPAB and HPAB selectively inhibited Th1 cell development, and DCPAB more potently suppressed IFN-γ than HPAB did. Interestingly, DCPAB and HPAB significantly suppressed the expression of T-box containing protein expressed in T cells (T-bet) that activates IFN-γ gene transcription. DCPAB additionally suppressed transcriptional activity of T-bet on IFN-γ gene promoter, whereas HPAB had no effect on T-bet activity. IFN-γ suppressive activity of DCPAB and HPAB was impaired in the absence of T-bet but was retrieved by the restoration of T-bet in T-bet-deficient T cells. Furthermore, DCPAB and HPAB attenuated inflammatory colitis development that was induced by CD4+ T cells in vivo. We suggest that the novel benzoxazole derivatives, DCPAB and HPAB, may have therapeutic effects on inflammatory colitis.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Benzoxazoles/pharmacology , Colitis/drug therapy , Interferon-gamma/antagonists & inhibitors , T-Box Domain Proteins/immunology , Th1 Cells/drug effects , Adoptive Transfer , Animals , Anti-Inflammatory Agents/chemical synthesis , Antibodies/pharmacology , Benzoxazoles/chemical synthesis , CD3 Complex/genetics , CD3 Complex/immunology , Colitis/genetics , Colitis/immunology , Colitis/pathology , Disease Models, Animal , Gene Expression Regulation , Interferon-gamma/genetics , Interferon-gamma/immunology , Lymph Nodes/drug effects , Lymph Nodes/immunology , Lymph Nodes/pathology , Lymphocyte Activation/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Primary Cell Culture , Promoter Regions, Genetic , Spleen/drug effects , Spleen/immunology , Spleen/pathology , T-Box Domain Proteins/deficiency , T-Box Domain Proteins/genetics , Th1 Cells/immunology , Th1 Cells/pathology , Th1 Cells/transplantation
SELECTION OF CITATIONS
SEARCH DETAIL
...