Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38892378

ABSTRACT

Dementia, a multifaceted neurological syndrome characterized by cognitive decline, poses significant challenges to daily functioning. The main causes of dementia, including Alzheimer's disease (AD), frontotemporal dementia (FTD), Lewy body dementia (LBD), and vascular dementia (VD), have different symptoms and etiologies. Genetic regulators, specifically non-coding RNAs (ncRNAs) such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are known to play important roles in dementia pathogenesis. MiRNAs, small non-coding RNAs, regulate gene expression by binding to the 3' untranslated regions of target messenger RNAs (mRNAs), while lncRNAs and circRNAs act as molecular sponges for miRNAs, thereby regulating gene expression. The emerging concept of competing endogenous RNA (ceRNA) interactions, involving lncRNAs and circRNAs as competitors for miRNA binding, has gained attention as potential biomarkers and therapeutic targets in dementia-related disorders. This review explores the regulatory roles of ncRNAs, particularly miRNAs, and the intricate dynamics of ceRNA interactions, providing insights into dementia pathogenesis and potential therapeutic avenues.


Subject(s)
Dementia , Gene Expression Regulation , MicroRNAs , RNA, Circular , RNA, Long Noncoding , RNA, Untranslated , Humans , Dementia/genetics , Dementia/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Animals , Biomarkers , Alzheimer Disease/genetics , Alzheimer Disease/metabolism
2.
Int J Mol Sci ; 25(8)2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38674135

ABSTRACT

Colorectal cancer (CRC) is the third most prevalent cancer to be diagnosed, and it has a substantial mortality rate. Despite numerous studies being conducted on CRC, it remains a significant health concern. The disease-free survival rates notably decrease as CRC progresses, emphasizing the urgency for effective diagnostic and therapeutic approaches. CRC development is caused by environmental factors, which mostly lead to the disruption of signaling pathways. Among these pathways, the Wingless/Integrated (Wnt) signaling pathway, Phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathway, Mitogen-Activated Protein Kinase (MAPK) signaling pathway, Transforming Growth Factor-ß (TGF-ß) signaling pathway, and p53 signaling pathway are considered to be important. These signaling pathways are also regulated by non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). They have emerged as crucial regulators of gene expression in CRC by changing their expression levels. The altered expression patterns of these ncRNAs have been implicated in CRC progression and development, suggesting their potential as diagnostic and therapeutic targets. This review provides an overview of the five key signaling pathways and regulation of ncRNAs involved in CRC pathogenesis that are studied to identify promising avenues for diagnosis and treatment strategies.


Subject(s)
Colorectal Neoplasms , Gene Expression Regulation, Neoplastic , RNA, Untranslated , Signal Transduction , Humans , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Animals
3.
Adv Mater ; 34(40): e2205270, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35901115

ABSTRACT

Ruthenium (Ru) is the most widely used metal as an electrocatalyst for nitrogen (N2 ) reduction reaction (NRR) because of the relatively high N2 adsorption strength for successive reaction. Recently, it has been well reported that the homogeneous Ru-based metal alloys such as RuRh, RuPt, and RuCo significantly enhance the selectivity and formation rate of ammonia (NH3 ). However, the metal combinations for NRR have been limited to several miscible combinations of metals with Ru, although various immiscible combinations have immense potential to show high NRR performance. In this study, an immiscible combination of Ru and copper (Cu) is first utilized, and homogeneous alloy nanoparticles (RuCu NPs) are fabricated by the carbothermal shock method. The RuCu homogeneous NP alloys on cellulose/carbon nanotube sponge exhibit the highest selectivity and NH3 formation rate of ≈31% and -73 µmol h-1 cm-2 , respectively. These are the highest values of the selectivity and NH3 formation rates among existing Ru-based alloy metal combinations.

4.
Sci Adv ; 7(48): eabk2984, 2021 Nov 26.
Article in English | MEDLINE | ID: mdl-34818029

ABSTRACT

The carbothermal shock (CTS) method has attracted considerable attention in recent years because it enables the generation of finely controlled polyelemental alloy nanoparticles (NPs). However, fabricating high surface coverage of NPs with minimized exposure of the carbon substrate is essential for various electrochemical applications and has been a critical limitation in CTS method. Here, we developed a methodology for creating NPs with high surface coverage on a carbon substrate by maximizing defect sites of cellulose during CTS. Cu NPs with high surface coverage of ~85%, various single NPs and polyelemental alloy NPs were densely fabricated with high uniformity and dispersity. The synthesized Cu NPs on cellulose/carbon paper substrate were used in electrocatalytic CO2 reduction reaction showing selectivity to ethylene of ~49% and high stability for over 30 hours of reaction. Our cellulose-derived CTS method enables the greater availability of polyelemental NPs for a wide range of catalytic and electrochemical applications.

5.
ACS Appl Mater Interfaces ; 11(37): 34100-34108, 2019 Sep 18.
Article in English | MEDLINE | ID: mdl-31436079

ABSTRACT

Two-dimensional (2D) inorganic nanomaterials have attracted enormous interest in diverse research areas because of their intriguing physicochemical properties. However, reliable method for the synthesis and composition manipulation of polycrystalline inorganic nanosheets (NSs) are still considered grand challenges. Here, we report a robust synthetic route for producing various kinds of inorganic porous NSs with desired multiple components and precise compositional stoichiometry by employing tunicin, i.e., cellulose extracted from earth-abundant marine invertebrate shell waste. Cellulose fibrils can be tightly immobilized on graphene oxide (GO) NSs to form stable tunicin-loaded GO NSs, which are used as a sacrificial template for homogeneous adsorption of diverse metal precursors. After a subsequent pyrolysis process, 2D metallic or metal oxide NSs are formed without any structural collapse. The rationally designed tunicin-loaded GO NS templating route paves a new path for the simple preparation of multicompositional inorganic NSs for broad applications, including chemical sensing and electrocatalysis.

6.
ACS Appl Mater Interfaces ; 11(10): 10208-10217, 2019 Mar 13.
Article in English | MEDLINE | ID: mdl-30785264

ABSTRACT

The development of freestanding fiber-type chemiresistors, having high integration ability with various portable electronics including smart clothing systems, is highly demanding for the next-generation wearable sensing platforms. However, critical challenges stemming from the irreversible chemical sensing kinetics and weak reliability of the freestanding fiber-type chemiresistor hinder their practical use. In this work, for the first time, we report on the potential suitability of the freestanding and ultraporous reduced graphene oxide fiber functionalized with WO3 nanorods (porous WO3 NRs-RGO composite fiber) as a sensitive nitrogen dioxide (NO2) detector. By employing a tunicate cellulose nanofiber (TCNF), which is a unique animal-type cellulose, the numerous mesopores are formed on a wet-spun TCNF-GO composite fiber, unlike a bare GO fiber with dense surface structure. More interestingly, due to the superior wettability of TCNF, the aqueous tungsten precursor is uniformly adsorbed on an ultraporous TCNF-GO fiber, and subsequent heat treatment results in the thermal reduction of a TCNF-GO fiber and hierarchical growth of WO3 NRs perpendicular to the porous RGO fiber (porous WO3 NRs-RGO fiber). The freestanding porous WO3 NRs-RGO fiber shows a notable response to 1 ppm NO2. Furthermore, we successfully demonstrate reversible NO2 sensing characteristics of the porous WO3 NRs-RGO fiber, which is integrated on a wrist-type wearable sensing device.

7.
Chemistry ; 24(10): 2370-2374, 2018 Feb 16.
Article in English | MEDLINE | ID: mdl-29314353

ABSTRACT

Synthetically valuable chiral (aziridin-2-yl)oxirane-3-carbaldehydes bearing three consecutive functional groups including aziridine, epoxide, and aldehyde were prepared from the stereoselective epoxidation of (aziridin-2-yl)acrylaldehydes with H2 O2 using organocatalyst (2R)- or (2S)-[diphenyl(trimethylsilyloxy)methyl]pyrrolidine as organocatalyst. The regioselective ring opening of aziridines and epoxides enabled us to achieve the highly efficient asymmetric synthesis of the antibiotic edeine D fragment 3-hydroxy-4,5-diaminopenatanoic acid, an intermediate for the formal synthesis of non-proteinogenic amino acid (-)-galantinic acid, and for potent antifungal agent (+)-preussin, and the medicinally important framework 3-hydroxy-2-hydroxymethylpyrrolidine.


Subject(s)
Aldehydes/chemistry , Aziridines/chemistry , Epoxy Compounds/chemistry , Stearates/chemistry , Aldehydes/chemical synthesis , Anti-Bacterial Agents/chemistry , Antifungal Agents/chemistry , Aziridines/chemical synthesis , Catalysis , Drug Design , Epoxy Compounds/chemical synthesis , Humans , Molecular Structure , Pyrrolidines/chemistry , Stearates/chemical synthesis , Stereoisomerism , Structure-Activity Relationship
8.
ACS Omega ; 2(11): 7525-7531, 2017 Nov 30.
Article in English | MEDLINE | ID: mdl-31457314

ABSTRACT

Multisubstituted furans were prepared from dialkyl 2-(aziridin-2-ylmethylene)malonate and/or 1,3-dione through aziridine ring opening by the internal carbonyl oxygen with the assistance of BF3·OEt2, followed by aromatization. This synthetic method is free from any metal and is atom-economical with all of the atoms in the starting material retained in the final product.

9.
Adv Mater ; 28(38): 8439-8445, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27488974

ABSTRACT

High-resolution (10 nm), high-areal density, high-aspect ratio (>5), and morphologically complex nanopatterns are fabricated from a single conventional block copolymer (BCP) structure with a 70 nm scale resolution and an aspect ratio of 1, through the secondary-sputtering phenomenon during the Ar-ion-bombardment process. This approach provides a foundation for the design of new routes to BCP lithography.

10.
Opt Express ; 22(4): 4699-704, 2014 Feb 24.
Article in English | MEDLINE | ID: mdl-24663788

ABSTRACT

We demonstrate large-area, closely-packed optical vortex arrays using self-assembled defects in smectic liquid crystals. Self-assembled smectic liquid crystals in a three-dimensional torus structure are called focal conic domains. Each FCD, having a micro-scale feature size, produces an optical vortex with consistent topological charge of 2. The spiral profile in the interferometry confirms the formation of an optical vortex, which is predicted by Jones matrix calculations.

SELECTION OF CITATIONS
SEARCH DETAIL
...