Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-39010759

ABSTRACT

The efficiency of copper indium gallium selenide (CIGS) solar cells that use transparent conductive oxide (TCO) as the top electrode decreases significantly as the device area increases owing to the poor electrical properties of TCO. Therefore, high-efficiency, large-area CIGS solar cells require the development of a novel top electrode with high transmittance and conductivity. In this study, a microgrid/TCO hybrid electrode is designed to minimize the optical and resistive losses that may occur in the top electrode of a CIGS solar cell. In addition, the buffer layer of the CIGS solar cells is changed from the conventional CdS buffer to a dry-processed wide-band gap ZnMgO (ZMO) buffer, resulting in increased device efficiency by minimizing parasitic absorption in the short-wavelength region. By optimizing the combination of ZMO buffer and the microgrid/TCO hybrid electrode, a device efficiency of up to 20.5% (with antireflection layers) is achieved over a small device area of 5 mm × 5 mm (total area). Moreover, CIGS solar cells with an increased device area of up to 20 mm × 70 mm (total area) exhibit an efficiency of up to 19.7% (with antireflection layers) when a microgrid/TCO hybrid electrode is applied. Thus, this study demonstrates the potential for high-efficiency, large-area CIGS solar cells with novel microgrid electrodes.

2.
Cell Rep ; 43(6): 114331, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38843394

ABSTRACT

The choroid plexus (ChP) produces cerebrospinal fluid (CSF). It also contributes to brain development and serves as the CSF-blood barrier. Prior studies have identified transporters on the epithelial cells that transport water and ions from the blood vasculature to the ventricles and tight junctions involved in the CSF-blood barrier. Yet, how the ChP epithelial cells control brain physiology remains unresolved. We use zebrafish to provide insights into the physiological roles of the ChP. Upon histological and transcriptomic analyses, we identify that the zebrafish ChP is conserved with mammals and expresses transporters involved in CSF secretion. Next, we show that the ChP epithelial cells secrete proteins into CSF. By ablating the ChP epithelial cells, we identify a reduction of the ventricular sizes without alterations of the CSF-blood barrier. Altogether, our findings reveal that the zebrafish ChP is conserved and contributes to the size and homeostasis of the brain ventricles.


Subject(s)
Cerebral Ventricles , Choroid Plexus , Homeostasis , Zebrafish , Animals , Zebrafish/metabolism , Choroid Plexus/metabolism , Cerebral Ventricles/metabolism , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Cerebrospinal Fluid/metabolism , Epithelial Cells/metabolism , Biological Evolution , Blood-Brain Barrier/metabolism
3.
iScience ; 27(6): 110078, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38868197

ABSTRACT

Cilia are slender, hair-like structures extending from cell surfaces and playing essential roles in diverse physiological processes. Within the nervous system, primary cilia contribute to signaling and sensory perception, while motile cilia facilitate cerebrospinal fluid flow. Here, we investigated the impact of ciliary loss on neural circuit development using a zebrafish line displaying ciliogenesis defects. We found that cilia defects after neurulation affect neurogenesis and brain morphology, especially in the cerebellum, and lead to altered gene expression profiles. Using whole brain calcium imaging, we measured reduced light-evoked and spontaneous neuronal activity in all brain regions. By shedding light on the intricate role of cilia in neural circuit formation and function in the zebrafish, our work highlights their evolutionary conserved role in the brain and sets the stage for future analysis of ciliopathy models.

4.
Small ; 20(9): e2305796, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37857585

ABSTRACT

Although various types of bifacial solar cells exist, few studies have been conducted on bifacial semitransparent CuInSe2 solar cells (BS-CISe SCs) despite the attractive potential in power generation from both sides in an albedo environment. The optimized BS-CISe SCs with 300 and 800 nm-thick absorber via a streamlined single-stage co-evaporation process exhibit a power conversion efficiency (PCE) of 6.32% and 10.6%, respectively. When double-sided total 2.0 sun illumination is assumed in an albedo environment, the bifacial power generation densities (BPGD) of them increases to 9.41% and 13.9%. Four-terminal bifacial semitransparent tandem solar cells (4T-BST SCs) are fabricated to increase the BPGD by mechanically stacking a BS-perovskite (PVK) top cell on top of a BS-CISe bottom cell with the 300 and 800 nm-thick absorber layers. When summed up, the best top and bottom cell PCEs of the 4T-BST SC with 300 and 800 nm-thick BS-CISe SC are 18.8% and 21.1%, respectively. However, the practical BPGD values of the 4T-BST SC under total 2 sun illumination are interestingly 23.4% and 24.4%, respectively. This is because the BS-CISe bottom cell's thickness affects how much rear-side illumination is transmitted to the BS-PVK top cell, increasing its current density and BPGD.

5.
Nanomaterials (Basel) ; 13(24)2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38132989

ABSTRACT

Recently, metal halide perovskite-based top cells have shown significant potential for use in inexpensive and high-performance tandem solar cells. In state-of-the-art p-i-n perovskite/Si tandem devices, atomic-layer-deposited SnO2 has been widely used as a buffer layer in the top cells because it enables conformal, pinhole-free, and highly transparent buffer layer formation. In this work, the effects of various electrical properties of SnO2 and C60 layers on the carrier transport characteristics and the performance of the final devices were investigated using a numerical simulation method, which was established based on real experimental data to increase the validity of the model. It was found that the band alignment at the SnO2/C60 interface does, indeed, have a significant impact on the electron transport. In addition, as a general design rule, it was suggested that at first, the conduction band offset (CBO) between C60 and SnO2 should be chosen so as not to be too negative. However, even in a case in which this CBO condition is not met, we would still have the means to improve the electron transport characteristics by increasing the doping density of at least one of the two layers of C60 and/or SnO2, which would enhance the built-in potential across the perovskite layer and the electron extraction at the C60/SnO2 interface.

6.
Neuron ; 111(10): 1521-1523, 2023 05 17.
Article in English | MEDLINE | ID: mdl-37201502

ABSTRACT

In this issue of Neuron, Sadegh et al.1 identify a novel potential therapeutical target for posthemorrhagic hydrocephalus (PHH). The authors identified that overexpression of Na-K-2Cl cotransporter-1 (NKCC1) in the choroid plexus relieves ventriculomegaly and enhances cerebrospinal fluid (CSF) clearance in improved PHH mouse models.


Subject(s)
Hydrocephalus , Symporters , Mice , Animals , Choroid Plexus , Hydrocephalus/etiology , Disease Models, Animal
7.
Elife ; 122023 01 26.
Article in English | MEDLINE | ID: mdl-36700548

ABSTRACT

Motile cilia are hair-like cell extensions that beat periodically to generate fluid flow along various epithelial tissues within the body. In dense multiciliated carpets, cilia were shown to exhibit a remarkable coordination of their beat in the form of traveling metachronal waves, a phenomenon which supposedly enhances fluid transport. Yet, how cilia coordinate their regular beat in multiciliated epithelia to move fluids remains insufficiently understood, particularly due to lack of rigorous quantification. We combine experiments, novel analysis tools, and theory to address this knowledge gap. To investigate collective dynamics of cilia, we studied zebrafish multiciliated epithelia in the nose and the brain. We focused mainly on the zebrafish nose, due to its conserved properties with other ciliated tissues and its superior accessibility for non-invasive imaging. We revealed that cilia are synchronized only locally and that the size of local synchronization domains increases with the viscosity of the surrounding medium. Even though synchronization is local only, we observed global patterns of traveling metachronal waves across the zebrafish multiciliated epithelium. Intriguingly, these global wave direction patterns are conserved across individual fish, but different for left and right noses, unveiling a chiral asymmetry of metachronal coordination. To understand the implications of synchronization for fluid pumping, we used a computational model of a regular array of cilia. We found that local metachronal synchronization prevents steric collisions, i.e., cilia colliding with each other, and improves fluid pumping in dense cilia carpets, but hardly affects the direction of fluid flow. In conclusion, we show that local synchronization together with tissue-scale cilia alignment coincide and generate metachronal wave patterns in multiciliated epithelia, which enhance their physiological function of fluid pumping.


Subject(s)
Cilia , Zebrafish , Animals , Cilia/physiology , Epithelium/physiology , Nose
8.
ACS Appl Mater Interfaces ; 14(47): 52825-52837, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36346616

ABSTRACT

Chalcopyrite-based materials for photovoltaic devices tend to exhibit complex structural imperfections originating from their polycrystalline nature; nevertheless, properly controlled devices are surprisingly irrelevant to them in terms of resulting device performances. The present work uses atom probe tomography to characterize co-evaporated high-quality Cu(In,Ga)Se2 (CIGS) films on flexible polyimide substrates either with or without doping with Na or doping with Na followed by K via a post-deposition treatment. The intent is to elucidate the unique characteristics of the grain boundaries (GBs) in CIGS, in particular the correlations/anti-correlations between matrix elements and the alkali dopants. Various compositional fluctuations are identified at GBs irrespective of the presence of alkali elements. However, [Cu-poor and Se/In,Ga-rich] GBs are significantly more common than [Cu-rich and Se/In,Ga-poor] ones. In addition, the anti-correlations between Cu and the other matrix elements are found to show not only regular trends among themselves but also the association with the degree of alkali segregation at GBs. The Na and K concentrations exhibited a correlation at the GBs but not in the intragrain regions. Density functional theory calculations are used to explain the compositional fluctuations and alkali segregation at the GBs. Our experimental and theoretical findings not only reveal the benign or beneficial characteristics of the GBs of CIGS but also provide a fundamental understanding of the GB chemistry in CIGS-based materials.

9.
ACS Appl Mater Interfaces ; 14(30): 34697-34705, 2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35856522

ABSTRACT

An efficient carrier transport is essential for enhancing the performance of thin-film solar cells, in particular Cu(In,Ga)Se2 (CIGS) solar cells, because of their great sensitivities to not only the interface but also the film bulk. Conventional methods to investigate the outcoming carriers and their transport properties measure the current and voltage either under illumination or dark conditions. However, the evaluation of current and voltage changes along the cross-section of the devices presents several limitations. To mitigate this shortcoming, we prepared gently etched devices and analyzed their properties using micro-Raman scattering spectroscopy, Kelvin probe force microscopy, and photoluminescence measurements. The atomic distributions and microstructures of the devices were investigated, and the defect densities in the device bulk were determined via admittance spectroscopy. The effects of Ga grading on the charge transport at the CIGS-CdS interface were categorized into various types of band offsets, which were directly confirmed by our experiments. The results indicated that reducing open-circuit voltage loss is crucial for obtaining a higher power conversion efficiency. Although the large Ga grading in the CIGS absorber induced higher defect levels, it effectuated a smaller open-circuit voltage loss because of carrier transport enhancement at the absorber-buffer interface, resulting from the optimized conduction band offsets.

10.
STAR Protoc ; 3(3): 101542, 2022 09 16.
Article in English | MEDLINE | ID: mdl-35842868

ABSTRACT

Motile cilia are hair-like structures that move and propel fluid, playing important roles in the physiology of organs. Here, we present a protocol to visualize and measure ciliary beating and cerebrospinal fluid (CSF) flow in the telencephalon of an adult zebrafish brain explant. We describe the preparation of brain explants, the recording of ciliary beating and CSF flow, and data analysis using ImageJ and MATLAB. These imaging and analysis techniques can be directly translated to other ciliated systems. For complete details on the use and execution of this protocol, please refer to D'Gama et al. (2021).


Subject(s)
Cilia , Zebrafish , Animals , Brain/metabolism , Cilia/metabolism , Telencephalon/metabolism , Zebrafish/metabolism , Zebrafish Proteins/metabolism
11.
Mol Neurobiol ; 58(9): 4770-4785, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34176096

ABSTRACT

Family with sequence similarity 19 (chemokine (C-C motif)-like) member A5 (FAM19A5) is a chemokine-like secretory protein recently identified as involved in the regulation of osteoclast formation, post-injury neointima formation, and depression. Although roles for FAM19A5 have been described in nervous system development and psychiatric disorders, its role in the nervous system remains poorly understood. Here, we analyzed the evolutionary history of FAM19A genes in vertebrates and identified FAM19A5l, a paralogous zebrafish gene originating from a common ancestral FAM19A5 gene. Further, zebrafish FAM19A5l is expressed in trigeminal and dorsal root ganglion neurons as well as distinct neuronal subsets of the central nervous system. Interestingly, FAM19A5l+ trigeminal neurons are nociceptive neurons that localized with TRPA1b and TRPV1 and respond to mustard oil treatment. Behavioral analysis further revealed that the nociceptive response to mustard oil decreases in FAM19A5l-knockout zebrafish larvae. In addition, TRPA1b and NGFa mRNA levels are down- and upregulated in FAM19A5l-knockout and -overexpressing transgenic zebrafish, respectively. Together, our data suggest that FAM19A5l plays a role in nociceptive responses to mustard oil by regulating TRPA1b and NGFa expression in zebrafish.


Subject(s)
Cytokines/metabolism , Neurons/drug effects , Nociception/drug effects , Nociceptors/drug effects , Plant Oils/pharmacology , Animals , Animals, Genetically Modified , Cytokines/genetics , Mustard Plant , Neurons/metabolism , Nociception/physiology , Nociceptors/metabolism , Zebrafish
12.
Exp Neurobiol ; 29(6): 417-424, 2020 Dec 31.
Article in English | MEDLINE | ID: mdl-33281119

ABSTRACT

The myelination of axons in the vertebrate nervous system through oligodendrocytes promotes efficient axonal conduction, which is required for the normal function of neurons. The central nervous system (CNS) can regenerate damaged myelin sheaths through the process of remyelination, but the failure of remyelination causes neurological disorders such as multiple sclerosis. In mammals, parenchymal oligodendrocyte progenitor cells (OPCs) are known to be the principal cell type responsible for remyelination in demyelinating diseases and traumatic injuries to the adult CNS. However, growing evidence suggests that neural stem cells (NSCs) are implicated in remyelination in animal models of demyelination. We have previously shown that olig2+ radial glia (RG) have the potential to function as NSCs to produce oligodendrocytes in adult zebrafish. In this study, we developed a zebrafish model of adult telencephalic injury to investigate cellular and molecular mechanisms underlying the regeneration of oligodendrocytes. Using this model, we showed that telencephalic injury induced the proliferation of olig2+ RG and parenchymal OPCs shortly after injury, which was followed by the regeneration of new oligodendrocytes in the adult zebrafish. We also showed that blocking Notch signaling promoted the proliferation of olig2+ RG and OPCs in the normal and injured telencephalon of adult zebrafish. Taken together, our data suggest that Notch-regulated proliferation of olig2+ RG and parenchymal OPCs is responsible for the regeneration of oligodendrocytes in the injured telencephalon of adult zebrafish.

13.
Glia ; 68(12): 2585-2600, 2020 12.
Article in English | MEDLINE | ID: mdl-32589818

ABSTRACT

Spinal motor neurons project their axons out of the spinal cord via the motor exit point (MEP) and regulate their target muscle fibers for diverse behaviors. Several populations of glial cells including Schwann cells, MEP glia, and perineurial glia are tightly associated with spinal motor axons in nerve fascicles. Zebrafish have two types of spinal motor neurons, primary motor neurons (PMNs) and secondary motor neurons (SMNs). PMNs are implicated in the rapid response, whereas SMNs are implicated in normal and slow movements. However, the precise mechanisms mediating the distinct functions of PMNs and SMNs in zebrafish are unclear. In this study, we found that PMNs were myelinated by MEP glia and Schwann cells, whereas SMNs remained unmyelinated at the examined stages. Immunohistochemical analysis revealed that myelinated PMNs solely innervated fast muscle through a distributed neuromuscular junction (NMJ), whereas unmyelinated SMNs innervated both fast and slow muscle through distributed and myoseptal NMJs, respectively, indicating that myelinated PMNs could provide rapid responses for startle and escape movements, while unmyelinated SMNs regulated normal, slow movement. Further, we demonstrate that neuregulin 1 (Nrg1) type III-ErbB signaling provides a key instructive signal that determines the myelination of primary motor axons by MEP glia and Schwann cells. Perineurial glia ensheathed unmyelinated secondary motor axons and myelinated primary motor nerves. Ensheathment required interaction with both MEP glia and Schwann cells. Collectively, these data suggest that primary and secondary motor neurons contribute to the regulation of movement in zebrafish with distinct patterns of myelination.


Subject(s)
Schwann Cells , Animals , Axons , Neuroglia , Zebrafish
14.
Clin Genet ; 98(1): 64-68, 2020 07.
Article in English | MEDLINE | ID: mdl-32185794

ABSTRACT

Primary ciliary dyskinesia (PCD) is a genetically heterogeneous disorder characterized by defects in the function or structure of motitle cilia. In most cases, causative variants result in axonemal dynein arm anomalies, however, PCD due to radial spoke (RS) and central pair (CP) of microtubules has been rarely reported. To identify the molecular basis of PCD characterized by RS/CP defects, we performed whole exome sequencing in PCD patients with RS/CP defects. We identified a homozygous nonsense variant (c.572G>A; p.Trp191*) in NME5, which encodes a protein component of the RS neck, in one PCD patient with situs solitus. Morpholino knockdown of nme5 in zebrafish embryos resulted in motile cilia defects with phenotypes compatible with ciliopathy. This is the first study to show NME5 as a PCD-causative gene in humans. Our findings indicate that NME5 screening should be considered for PCD patients with RS/CP defects.


Subject(s)
Cilia/genetics , Ciliary Motility Disorders/genetics , Codon, Nonsense/genetics , Mutation/genetics , NM23 Nucleoside Diphosphate Kinases/genetics , Adult , Amino Acid Sequence , Animals , Axonemal Dyneins/genetics , Axoneme/genetics , Female , Homozygote , Humans , Microtubules/genetics , Phenotype , Zebrafish/genetics
15.
Front Neurosci ; 13: 917, 2019.
Article in English | MEDLINE | ID: mdl-31543758

ABSTRACT

FAM19A5 is a secretory protein that is predominantly expressed in the brain. Although the FAM19A5 gene has been found to be associated with neurological and/or psychiatric diseases, only limited information is available on its function in the brain. Using FAM19A5-LacZ knock-in mice, we determined the expression pattern of FAM19A5 in developing and adult brains and identified cell types that express FAM19A5 in naïve and traumatic brain injury (TBI)-induced brains. According to X-gal staining results, FAM19A5 is expressed in the ventricular zone and ganglionic eminence at a very early stage of brain development, suggesting its functions are related to the generation of neural stem cells and oligodendrocyte precursor cells (OPCs). In the later stages of developing embryos and in adult mice, FAM19A5 expression expanded broadly to particular regions of the brain, including layers 2/3 and 5 of the cortex, cornu amonis (CA) region of the hippocampus, and the corpus callosum. X-gal staining combined with immunostaining for a variety of cell-type markers revealed that FAM19A5 is expressed in many different cell types, including neurons, OPCs, astrocytes, and microglia; however, only some populations of these cell types produce FAM19A5. In a subpopulation of neuronal cells, TBI led to increased X-gal staining that extended to the nucleus, marked by slightly condensed content and increased heterochromatin formation along the nuclear border. Similarly, nuclear extension of X-gal staining occurred in a subpopulation of OPCs in the corpus callosum of the TBI-induced brain. Together, these results suggest that FAM19A5 plays a role in nervous system development from an early stage and increases its expression in response to pathological conditions in subsets of neurons and OPCs of the adult brain.

16.
Front Neural Circuits ; 13: 53, 2019.
Article in English | MEDLINE | ID: mdl-31474838

ABSTRACT

Spexin (SPX) is an evolutionarily conserved neuropeptide that is expressed in the mammalian brain and peripheral tissue. Two orthologs are present in the teleost, SPX1 and SPX2. SPX1 is involved in reproduction and food intake. Recently, SPX1 neurons have been found to be located in the specific nuclei of dorsal habenula (dHb) and to project into the interpeduncular nucleus (IPN), in which galanin receptor 2a/2b (GALR2a/2b) expression was also observed. This indicates that habenula SPX1 neurons may interact with GALR2a/2b in the IPN; however, the function of SPX1 in the dHb-IPN neuronal circuit remains unknown. To determine the role of SPX1 in the dHb-IPN neural circuit, we generated transgenic zebrafish overexpressing SPX1 specifically in the dHb. We found that transgenic zebrafish overexpressing SPX1 in the dHb had anxiolytic behaviors compared with their wildtype siblings. Furthermore, quantitative PCR revealed that mRNA expression of galr2a and galr2b in the IPN and serotonin-related genes in the raphe was upregulated in the brains of transgenic zebrafish. Taken together, our data suggest that SPX1 function in the dHb-IPN neural circuits is implicated in the regulation of anxiety behaviors via modulation of the serotoninergic system in zebrafish.


Subject(s)
Anxiety/metabolism , Habenula/metabolism , Interpeduncular Nucleus/metabolism , Peptide Hormones/biosynthesis , Animals , Animals, Genetically Modified , Anxiety/genetics , Gene Expression , Male , Peptide Hormones/genetics , Zebrafish
17.
Sci Rep ; 9(1): 5025, 2019 03 22.
Article in English | MEDLINE | ID: mdl-30903017

ABSTRACT

Spexin (SPX) is a highly conserved neuropeptide that is widely expressed in mammalian brain and peripheral tissue. In teleost, SPX1 is mainly expressed in the brain and ovary, and is involved in reproduction and food intake. A second form of SPX, SPX2, was recently identified in chick, Xenopus, and zebrafish. The expression pattern and roles of SPX2 are unknown. SPX (spx1) is highly expressed in the vertebrate brain, but its distribution, circuits, and interactions with its putative receptor are unknown. Here, we observed expression of spx1 in the midbrain and hindbrain, and spx2 in the hypothalamic preoptic area using in situ RNA hybridization in zebrafish. Analysis of transgenic reporter zebrafish revealed that hindbrain SPX1 neurons are PAX2+ inhibitory interneurons and project to the spinal cord, where they interact with galanin receptor 2b (GALR2b) neurons, suggesting that hindbrain SPX1 neurons are reticulospinal neurons. spx1 mRNA and SPX1 reporter expression were observed in dorsal habenula (dHb). SPX1 neurons in the dHb project to the interpeduncular nucleus (IPN), where GALR2a and GALR2b expression was also observed, suggesting that habenula SPX1 neurons may interact with GALR2a/2b in the IPN.


Subject(s)
Brain/metabolism , Nerve Net/metabolism , Neurons/metabolism , Neuropeptides/genetics , Zebrafish Proteins/genetics , Zebrafish/metabolism , Animals , Animals, Genetically Modified , Gene Expression , In Situ Hybridization , In Situ Hybridization, Fluorescence , Larva/genetics , Larva/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mesencephalon/metabolism , Nerve Net/cytology , Neuropeptides/metabolism , Preoptic Area/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rhombencephalon/metabolism , Zebrafish/genetics , Zebrafish Proteins/metabolism
18.
Neurosci Lett ; 668: 73-79, 2018 03 06.
Article in English | MEDLINE | ID: mdl-29329911

ABSTRACT

Neuropeptide Y (NPY) is an evolutionarily conserved neuropeptide implicated in feeding regulation in vertebrates. In mammals, NPY neurons coexpress Agouti-related protein (AgRP) in the arcuate nucleus of the hypothalamus, and NPY/AgRP neurons activate orexigenic signaling to increase food intake. Zebrafish express npy and two agrp genes, agrp1 and agrp2, in the brain. Similar to mammals, NPY and AgRP1 act as orexigenic factors in zebrafish, but the exact distribution of NPY and AgRP neurons in the zebrafish brain and the regulation of these genes by metabolic states remain unclear. In this study, we analyzed the tissue distribution of npy, agrp1, and agrp2 mRNA in the brain of larval and adult zebrafish. We detected the expression of agrp1, but not npy, in the hypothalamus of larval zebrafish. In the adult zebrafish brain, npy mRNA expression was detected in the dorsal area of the periventricular and lateral hypothalamus, but fasting induced upregulation of npy only in the lateral hypothalamus, indicating that NPY neurons in this area are implicated in feeding regulation. However, consistent with the findings in larval zebrafish, NPY neurons in the hypothalamus did not coexpress AgRP1. In contrast, fasting resulted in a dramatic increase in AgRP1 neurons in the ventral periventricular hypothalamus, which do not coexpress NPY. In addition, we found for the first time that npy- and agrp1-expressing neurons function as GABAergic inhibitory neurons in zebrafish, as they do in mammals. Taken together, our results show that the zebrafish NPY/AgRP system is involved in appetite regulation. In addition, our data suggest that although npy and agrp1 were initially expressed in distinct neurons, evolution has resulted in their coexpression in mammalian hypothalamic neurons.


Subject(s)
Agouti-Related Protein/metabolism , Appetite Regulation/physiology , Hypothalamus/metabolism , Neuropeptide Y/metabolism , RNA, Messenger/metabolism , Zebrafish Proteins/metabolism , Zebrafish/metabolism , Animals , Female , Larva/metabolism , Male
19.
J Clin Nurs ; 27(7-8): 1692-1701, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29266478

ABSTRACT

AIMS AND OBJECTIVES: To identify the relationship between emergency nurses' intention to leave the hospital and their coping methods following workplace violence. BACKGROUND: Emergency departments report a high prevalence of workplace violence, with nurses being at particular risk of violence from patients and patients' relatives. Violence negatively influences nurses' personal and professional lives and increases their turnover. DESIGN: This is a cross-sectional, descriptive survey study. METHODS: Participants were nurses (n = 214) with over one year of experience of working in an emergency department. We measured workplace violence, coping after workplace violence experiences and job satisfaction using scales validated through a preliminary survey. Questionnaires were distributed to all nurses who signed informed consent forms. Multiple logistic regression analysis was used to identify the relationships between nurses' intention to leave the hospital and their coping methods after workplace violence. RESULTS: Verbal abuse was the most frequent violence experience and more often originated from patients' relatives than from patients. Of the nurses who experienced violence, 61.0% considered leaving the hospital. As for coping, nurses who employed problem-focused coping most frequently sought to identify the problems that cause violence, while nurses who employed emotion-focused coping primarily attempted to endure the situation. The multiple logistic regression analysis revealed that female sex, emotion-focused coping and job satisfaction were significantly related to emergency nurses' intention to leave. CONCLUSIONS: Emotion-focused coping seems to have a stronger effect on intention to leave after experiencing violence than does job satisfaction. RELEVANCE TO CLINICAL PRACTICE: Nurse managers should begin providing emergency nurses with useful information to guide their management of violence experiences. Nurse managers should also encourage nurses to report violent experiences to the administrative department rather than resorting to emotion-focused coping. Nurses should be provided with the opportunity to communicate their feelings to their colleagues.


Subject(s)
Emergency Service, Hospital/statistics & numerical data , Job Satisfaction , Nursing Staff, Hospital/psychology , Personnel Turnover/statistics & numerical data , Workplace Violence/psychology , Workplace Violence/statistics & numerical data , Adaptation, Psychological , Adult , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Stress, Psychological , Surveys and Questionnaires
20.
ACS Appl Mater Interfaces ; 9(42): 36865-36874, 2017 Oct 25.
Article in English | MEDLINE | ID: mdl-28992419

ABSTRACT

The electron transport layer (ETL) is a key component of perovskite solar cells (PSCs) and must provide efficient electron extraction and collection while minimizing the charge recombination at interfaces in order to ensure high performance. Conventional bilayered TiO2 ETLs fabricated by depositing compact TiO2 (c-TiO2) and mesoporous TiO2 (mp-TiO2) in sequence exhibit resistive losses due to the contact resistance at the c-TiO2/mp-TiO2 interface and the series resistance arising from the intrinsically low conductivity of TiO2. Herein, to minimize such resistive losses, we developed a novel ETL consisting of an ultrathin c-TiO2 layer hybridized with mp-TiO2, which is fabricated by performing one-step spin-coating of a mp-TiO2 solution containing a small amount of titanium diisopropoxide bis(acetylacetonate) (TAA). By using electron microscopies and elemental mapping analysis, we establish that the optimal concentration of TAA produces an ultrathin blocking layer with a thickness of ∼3 nm and ensures that the mp-TiO2 layer has a suitable porosity for efficient perovskite infiltration. We compare PSCs based on mesoscopic ETLs with and without compact layers to determine the role of the hole-blocking layer in their performances. The hybrid ETLs exhibit enhanced electron extraction and reduced charge recombination, resulting in better photovoltaic performances and reduced hysteresis of PSCs compared to those with conventional bilayered ETLs.

SELECTION OF CITATIONS
SEARCH DETAIL
...