Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 15(2): 1529-32, 2015 Feb.
Article in English | MEDLINE | ID: mdl-26353686

ABSTRACT

In this study, C-doped TiO2 particles were successfully synthesized by a hydrothermal method. Three binding energy peaks were observed at 284.6, 286.2, and 288.5 eV in the C is region of the XPS. The signals at 286.2 and 288.5 eV were attributed to chemically bound C-O and Ti-C-O linkages within the crystalline TiO2 lattice, respectively. The introduction of carbon did not affect the crystallite structure or BET surface area of TiO2. The JSC value of DSSCs based on a C-doped TiO2 electrode was increased by 20% compared to DSSCs using a pure TiO2 electrode, and the energy conversion efficiency was increased by 23%. This was due to the enhancement of dye adsorption and high electrical conductivity of the carbon. High energy conversion efficiency was achieved with the DSSCs based on the C-doped TiC2 electrode.

2.
Biofouling ; 25(5): 473-9, 2009.
Article in English | MEDLINE | ID: mdl-19360484

ABSTRACT

Dense phase carbon dioxide (DPCD) is one of the most promising techniques available to control microorganisms as a non-thermal disinfection method. However, no study on the efficiency of biofilm disinfection using DPCD has been reported. The efficiency of DPCD in inactivating Pseudomonas aeruginosa biofilm, which is known to have high antimicrobial resistance, was thus investigated. P. aeruginosa biofilm, which was not immersed in water but was completely wet, was found to be more effectively inactivated by DPCD treatment, achieving a 6-log reduction within 7 min. The inactivation efficiency increased modestly with increasing pressure and temperature. This study also reports that the water-unimmersed condition is one of the most important operating parameters in achieving efficient biofilm control by DPCD treatment. In addition, observations by confocal laser scanning microscopy revealed that DPCD treatment not only inactivated biofilm cells on the glass coupons but also caused detachment of the biofilm following weakening of its structure as a result of the DPCD treatment; this is an added benefit of DPCD treatment.


Subject(s)
Biofilms/drug effects , Carbon Dioxide/pharmacology , Disinfection/methods , Pseudomonas aeruginosa/drug effects , Biofilms/growth & development , Glass , Pseudomonas aeruginosa/growth & development , Time Factors , Wettability
SELECTION OF CITATIONS
SEARCH DETAIL
...